Advertisement

Frozen and Invariant Quantum Discord Under Local Dephasing Noise

  • Göktuğ KarpatEmail author
  • Carole Addis
  • Sabrina Maniscalco
Chapter
Part of the Quantum Science and Technology book series (QST)

Abstract

In nature, there exist various different types of correlations among the constituents of composite physical systems. While macroscopic systems only form correlations of classical nature, quantum mechanics allows for the existence of curious correlations devoid of a classical analogue, such as quantum entanglement. The idea of entanglement is as old as the quantum theory itself.

Notes

Acknowledgements

S.M. acknowledges the Horizon 2020 EU collaborative project QuProCS (Grant Agreement 641277), the Academy of Finland (Project no. 287750) and the Magnus Ehrnrooth Foundation. C.A. acknowledges financial support from the EPSRC (UK) via the Doctoral Training Centre in Condensed Matter Physics. G.K. is grateful to Sao Paulo Research Foundation (FAPESP) for the fellowship given under grant number 2012/18558-5.

References

  1. 1.
    B. Gilles, Quantum cryptography: public-key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing 1984 (IEEE Computer Society, 1984), pp. 175–179Google Scholar
  2. 2.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  3. 3.
    P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, CA, 1994), pp. 124D134Google Scholar
  4. 4.
    B.P. Lanyon, M. Barbieri, M.P. Almeida, A.G. White, Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    H. Ollivier, W.H. Zurek, Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    L. Henderson, V. Vedral, Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    B. Dakic, V. Vedral, C. Brukner, Necessary and sufficient condition for non-zero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    V. Madhok, A. Datta, Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    A. Brodutch, D.R. Terno, Quantum discord, local operations, and Maxwell’s demons. Phys. Rev. A 81, 062103 (2010)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, A. Winter, Operational interpretations of quantum discord. Phys. Rev. A. 83, 032324 (2011)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    A. Streltsov, H. Kampermann, D. Bruss, Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    T.K. Chuan, H. Maillard, K. Modo, T. Paterek, M. Paternostro, M. Pianai, Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    S. Boixo, L. Aolita, D. Cavalcanti, K. Modi, A. Winter, Quantum locking of classical correlations and quantum discord of classical-quantum states. Int. J Quant. Inf. 9, 1643 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M.F. Cornélio, M.C. de Oliveira, F.F. Fanchni, Entanglement irreversibility from quantum discord and quantum deficit. Phys. Rev. Lett. 107, 020502 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    A. Streltsov, H. Kampermann, D. Bruss, Linking quantum discord to entanglement in a measurement. Phys. Rev. Lett. 106, 160401 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Werlang, C. Trippe, G.A.P. Ribeiro, G. Rigolin, Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)Google Scholar
  19. 19.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University, Press, 2007)CrossRefzbMATHGoogle Scholar
  20. 20.
    U. Weiss, Quantum Dissipative Systems, 3rd edn. (World Scientific, Singapore, 2008)CrossRefzbMATHGoogle Scholar
  21. 21.
    C.W. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 2010)zbMATHGoogle Scholar
  22. 22.
    M.A. Schlosshauer, Decoherence and the Quantum-To-Classical Transition (Springer, Berlin, 2007)Google Scholar
  23. 23.
    T. Yu, J.H. Eberly, Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    T. Yu, J.H. Eberly, Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    B. Wang, Z.Y. Xu, Z.Q. Chen, M. Feng, Non-Markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    A. Auyuanet, L. Davidovich, Quantum correlations as precursors of entanglement. Phys. Rev. A 82, 032112 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Z.Y. Sun, L. Li, K.L. Yao, G.H. Du, J.W. Liu, B. Luo, N. Li, H.N. Li, Quantum discord in matrix product systems. Phys. Rev. A 82, 032310 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    T. Werlang, S. Souza, F.F. Fanchini, C.J. Villas Boas, Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    J. Maziero, L.C. Celeri, R.M. Serra, V. Vedral, Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    L. Mazzola, J. Piilo, S. Maniscalco, Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104(20), 200401 (2010)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    L. Mazzola, J. Piilo, S. Maniscalco, Frozen discord in non-Markovian dephasing channels. Int. J. Quantum Inf. 9(03), 981 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    P. Haikka, T.H. Johnson, S. Maniscalco, Non-Markovianity of local dephasing channels and time-invariant discord. Phys. Rev. A 87(1), 010103 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    G. Karpat, Z. Gedik, Correlation dynamics of qubit-qutrit systems in a classical dephasing environment. Phys. Lett. A 375, 4166 (2011)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    E.G. Carnio, A. Buchleitner, M. Gessner, Robust asymptotic entanglement under multipartite collective dephasing. Phys. Rev. Lett. 115, 010404 (2015)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    N.J. Cerf, C. Adami, Quantum information theory of entanglement and measurement. Physica D120, 62–81 (1998)ADSzbMATHGoogle Scholar
  37. 37.
    V.P. Belavkin, R.L. Stratonovich, Optimization of quantum information processing maximizing mutual information. Radio Eng. Electron. Phys. 19(9), 1349 (1973). [trans. from Radiotekhnika i Electronika, 1973, 19, 9, 1839. 844]Google Scholar
  38. 38.
    B. Groisman, S. Popescu, A. Winter, Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    B. Schumacher, M.D. Westmoreland, Quantum mutual information and the one-time pad. Phys. Rev. A 74, 042305 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    S. Luo, Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    M. Ali, A.R.P. Rau, G. Alber, Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    F. Galve, G.L. Giorgi, R. Zambrini, Orthogonal measurements are almost sufficient for quantum discord of two qubits. EPL 96, 40005 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    A. Wehrl, General properties of entropy. Rev. Mod. Phys. 50, 221 (1978)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    G. Lindblad, Quantum entropy and quantum measurement, in Quantum Aspects of Optical Communications, vol. 378, Lecture Notes in Physics, ed. by C. Bendjaballah, et al. (Springer, Heidelberg, 1991), pp. 71–80CrossRefGoogle Scholar
  45. 45.
    B. You, L.-X. Cen, Necessary and sufficient conditions for the freezing phenomena of quantum discord under phase damping. Phys. Rev. A 86, 012102 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    T. Chanda, A.K. Pal, A. Biswas, A. Sen (De), U. Sen, Freezing of quantum correlations under local decoherence. Phys. Rev. A 91, 062119 (2015)Google Scholar
  47. 47.
    J.P.G. Pinto, G. Karpat, F.F. Fanchini, Sudden change of quantum discord for a system of two qubits. Phys. Rev. A 88, 034304 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    G. Karpat, Z. Gedik, Correlation dynamics of qubit-qutrit systems in a classical dephasing environment. Phys. Lett. A 375, 4166 (2011)Google Scholar
  49. 49.
    B. Bellomo, R. Lo Franco, G. Compagno, Dynamics of geometric and entropic quantifiers of correlations in open quantum systems. Phys. Rev. A 86, 012312 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    J.D. Montealegre, F.M. Paula, A. Saguia, M.S. Sarandy, One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    F.M. Paula, I.A. Silva, J.D. Montealegre, A.M. Souza, E.R. deAzevedo, R.S. Sarthour, A. Saguia, I.S. Oliveira, D.O. Soares-Pinto, G. Adesso, M.S. Sarandy, Observation of environment-induced double sudden transitions in geometric quantum correlations. Phys. Rev. Lett. 111, 250401 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    B. Aaronson, R. Lo Franco, G. Adesso, Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88, 012120 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    M. Cianciaruso, T.R. Bromley, W. Roga, R. Lo Franco, G. Adesso, Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    J.-S. Xu, X.-Y. Xu, C.-F. Li, C.-J. Zhang, X.-B. Zou, G.-C. Guo, Experimental investigation of classical and quantum correlations under decoherence. Nature Commun. 1, 7 (2010)Google Scholar
  55. 55.
    R. Auccaise, L.C. Celeri, D.O. Soares-Pinto, E.R. deAzevedo, J. Maziero, A.M. Souza, T.J. Bonagamba, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Environment-induced sudden transition in quantum discord dynamics. Phys. Rev. Lett. 107, 140403 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    S. Daffer, K. Wdkiewicz, J.D. Cresser, J.K. McIver, Depolarizing channel as a completely positive map with memory. Phys. Rev. A 70, 010304(R) (2004)ADSCrossRefGoogle Scholar
  57. 57.
    J.-S. Xu, C.-F. Li, C.-J. Zhang, X.-Y. Xu, Y.-S. Zhang, G.-C. Guo, Experimental investigation of the non-Markovian dynamics of classical and quantum correlations. Phys. Rev. A 82, 042328 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    J. Luczka, Spin in contact with thermostat: exact reduced dynamics. Physica A 167, 919 (1990)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    G.M. Palma, K.-A. Suominen, A.K. Ekert, Quantum computers and dissipation. Proc. Roy. Soc. Lond. A 452, 567 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    J.H. Reina, L. Quiroga, N.F. Johnson, Decoherence of quantum registers. Phys. Rev. A 65, 032326 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    M.A. Cirone, G. De Chiara, G.M. Palma, A. Recati, Collective decoherence of cold atoms coupled to a Bose–Einstein condensate. New J. Phys. 11, 103055 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    P. Haikka, S. McEndoo, G. De Chiara, G.M. Palma, S. Maniscalco, Quantifying, characterizing, and controlling information flow in ultracold atomic gases. Phys. Rev. A 84, 031602 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    A.W. Chin, S.F. Huelga, M.B. Plenio, Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    G.R. Fleming, S.F. Huelga, M.B. Plenio, Focus on quantum effects and noise in biomolecules. New J. Phys. 13, 115002 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    C. Uchiyama, M. Aihara, Multipulse control of decoherence. Phys. Rev. A 66, 032313 (2002)ADSCrossRefGoogle Scholar
  66. 66.
    C. Addis, F. Ciccarello, M. Cascio, G.M. Palma, S. Maniscalco, Dynamical decoupling efficiency versus quantum non-Markovianity. New J. Phys. 17, 123004 (2015)ADSCrossRefGoogle Scholar
  67. 67.
    L. Viola, E. Knil, S. Lloyd, Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1998)Google Scholar
  68. 68.
    T.E. Hodgson, L. Viola, I. D’Amico, Towards optimised suppression of dephasing in systems subject to pulse timing constraints. Phys. Rev. A 81, 062321 (2010)ADSCrossRefGoogle Scholar
  69. 69.
    T.E. Hodgson, L. Viola, I. DAmico, Decoherence-protected storage of exciton qubits through ultrafast multipulse control. Phys. Rev. B 78, 165311 (2008)Google Scholar
  70. 70.
    L. Viola, S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733 (1998)ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    M.J. Biercuk et al., Optimised dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    E.L. Hahn, Spin echoes. Phys. Rev. 80, 580 (1950)ADSCrossRefzbMATHGoogle Scholar
  73. 73.
    K. Khodjasteh, D.A. Lidar, Fault-tolerant quantum dynamical decoupling. Phys. Rev. Lett. 95, 180501 (2005)ADSCrossRefzbMATHGoogle Scholar
  74. 74.
    K. Khodjasteh, D.A. Lidar, Performance of deterministic dynamical decoupling schemes: concatenated and periodic pulse sequences. Phys. Rev. A 75, 062310 (2007)ADSCrossRefGoogle Scholar
  75. 75.
    T.E. Hodgson, L. Viola, I. DAmico, Towards optimised suppression of dephasing in systems subject to pulse timing constraints. Phys. Rev. A 81, 062321 (2010)ADSCrossRefGoogle Scholar
  76. 76.
    G.S. Uhrig, Keeping a quantum bit alive by optimised \(\pi \)-pulse sequences. Phys. Rev. Lett. 98, 100504 (2007)ADSCrossRefGoogle Scholar
  77. 77.
    G.S. Uhrig, Exact results on dynamical decoupling by \(\pi \) pulses in quantum information processes. New J. Phys. 10, 083024 (2008)ADSCrossRefGoogle Scholar
  78. 78.
    C. Arenz, R. Hillier, M. Fraas, D. Burgarth, Distinguishing decoherence from alternative quantum theories by dynamical decoupling. Phys. Rev. A 92, 022102 (2015)ADSCrossRefGoogle Scholar
  79. 79.
    C. Addis, F. Ciccarello, M. Cascio, G.M. Palma, S. Maniscalco, Dynamical decoupling efficiency versus quantum non-Markovianity. New J. Phys. 17, 123004 (2015)ADSCrossRefGoogle Scholar
  80. 80.
    R. Lo Franco, A. D’Arrigo, G. Falci, G. Compagno, E. Paladino, Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling. Phys. Rev. B 90, 054304 (2014)ADSCrossRefGoogle Scholar
  81. 81.
    S. Singha Roy, T.S. Mahesh, G.S. Agarwal, Storing entanglement of nuclear spins via Uhrig dynamical decoupling. Phys. Rev. A 83, 062326 (2011)ADSCrossRefGoogle Scholar
  82. 82.
    F.F. Fanchini, E.F. de Lima, L.K. Castelano, Shielding quantum discord through continuous dynamical decoupling. Phys. Rev. A 86, 052310 (2012)ADSCrossRefGoogle Scholar
  83. 83.
    A. Rosario et al., On the relationship between non-Markovianity and entanglement protection. J. Phys. B At. Mol. Opt. Phys. 45, 095501 (2012)ADSCrossRefGoogle Scholar
  84. 84.
    B. Bellomo, R. Lo Franco, G. Compagno, Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)ADSCrossRefGoogle Scholar
  85. 85.
    J.-S. Zhang, A.-X. Chen, Controlling sudden transitions of bipartite quantum correlations under dephasing via dynamical decoupling. J. Phys. B At. Mol. Opt. Phys. 47, 21 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Göktuğ Karpat
    • 1
    • 2
    Email author
  • Carole Addis
    • 3
  • Sabrina Maniscalco
    • 4
    • 5
  1. 1.Faculdade de CiênciasUNESP - Universidade Estadual PaulistaBauruBrazil
  2. 2.Faculty of Arts and Sciences, Department of PhysicsIzmir University of EconomicsIzmirTurkey
  3. 3.SUPA, EPS/PhysicsHeriot-Watt UniversityEdinburghUK
  4. 4.Department of Physics and Astronomy, Turku Center for Quantum PhysicsUniversity of TurkuTurkuFinland
  5. 5.Department of Applied Physics, School of Science, Centre for Quantum EngineeringAalto UniversityEspooFinland

Personalised recommendations