The Sudden Change Phenomenon of Quantum Discord

  • Lucas C. CéleriEmail author
  • Jonas Maziero
Part of the Quantum Science and Technology book series (QST)


Even if the parameters determining a system’s state are varied smoothly, the behavior of quantum correlations alike to quantum discord, and of its classical counterparts, can be very peculiar, with the appearance of non-analyticities in its rate of change. Here we review this sudden change phenomenon (SCP) discussing some important points related to it: Its uncovering, interpretations, and experimental verifications, its use in the context of the emergence of the pointer basis in a quantum measurement process, its appearance and universality under Markovian and non-Markovian dynamics, its theoretical and experimental investigation in some other physical scenarios, and the related phenomenon of double sudden change of trace distance discord. Several open questions are identified, and we envisage that in answering them we will gain significant further insight about the relation between the SCP and the symmetry-geometric aspects of the quantum state space.


Quantum discord Open systems Decoherence Sudden change 



We acknowledge financial support from the Brazilian funding agencies CNPq (Grants No. 401230/2014-7, 445516/2014-3, 305086/2013-8, 441875/2014-9 and 303496/2014-2) and CAPES (Grant No. 6531/2014-08), the Brazilian National Institute of Science and Technology of Quantum Information (INCT/IQ). JM gratefully acknowledges the hospitality of the Physics Institute and Laser Spectroscopy Group at the Universidad de la República, Uruguay.


  1. 1.
    D. Girolami, T. Tufarelli, G. Adesso, Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    A. Shabani, D.A. Lidar, Vanishing quantum discord is necessary and sufficient for completely positive maps. Phys. Rev. Lett. 102, 100402 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    H.M. Wiseman, Quantum discord is Bohr’s notion of non-mechanical disturbance introduced to counter the Einstein–Podolsky–Rosen argument. Ann. Phys. 338, 361 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    C.-J. Shan, W.-W. Cheng, J.-B. Liu, Y.-S. Cheng, T.-K. Liu, Scaling of geometric quantum discord close to a topological phase transition. Sci. Rep. 4, 4473 (2014)CrossRefGoogle Scholar
  6. 6.
    G.-M. Zeng, L.-A. Wu, H.-J. Xing, Symmetry restoration and quantumness reestablishment. Sci. Rep. 4, 6377 (2014)CrossRefGoogle Scholar
  7. 7.
    J. Li, T. Yu, H.-Q. Lin, J.Q. You, Probing the non-locality of Majorana fermions via quantum correlations. Sci. Rep. 4, 4930 (2014)CrossRefGoogle Scholar
  8. 8.
    J. Martin, V. Vennin, Quantum discord of cosmic inflation: Can we show that CMB anisotropies are of quantum-mechanical origin? Phys. Rev. D 93, 023505 (2016)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2000)zbMATHGoogle Scholar
  10. 10.
    J. Preskill, Quantum Information and Computation.
  11. 11.
    M.M. Wilde, Quantum Information Theory (Cambridge University Press, Cambridge, 2013)zbMATHCrossRefGoogle Scholar
  12. 12.
    A. Datta, A. Shaji, C.M. Caves, Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    V. Madhok, A. Datta, Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, A. Winter, Operational interpretations of quantum discord. Phys. Rev. A 83, 032324 (2011)ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    L. Roa, J.C. Retamal, M. Alid-Vaccarezza, Dissonance is required for assisted optimal state discrimination. Phys. Rev. Lett. 107, 080401 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    S. Pirandola, Quantum discord as a resource for quantum cryptography. Sci. Rep. 4, 6956 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    S. Lloyd, V. Chiloyan, Y. Hu, S. Huberman, Z.-W. Liu, G. Chen, No Energy Transport Without Discord (2015).
  18. 18.
    C. Weedbrook, S. Pirandola, J. Thompson, V. Vedral, M. Gu, How discord underlies the noise resilience of quantum illumination. New J. Phys. 18, 043027 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, P. Walther, Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Piani, V. Narasimhachar, J. Calsamiglia, Quantumness of correlations, quantumness of ensembles and quantum data hiding. New J. Phys. 16, 113001 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    D. Girolami, A.M. Souza, V. Giovannetti, T. Tufarelli, J.G. Filgueiras, R.S. Sarthour, D.O. Soares-Pinto, I.S. Oliveira, G. Adesso, Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    N. Friis, M. Skotiniotis, I. Fuentes, W. Dür, Heisenberg scaling in Gaussian quantum metrology. Phys. Rev. A 92, 022106 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    J. Maziero, L.C. Céleri, R.M. Serra, V. Vedral, Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    M.D. Lang, C.M. Caves, Quantum discord and the geometry of Bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    B. Li, Z.-X. Wang, S.-M. Fei, Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    M. Shi, F. Jiang, C. Sun, J. Du, Geometric picture of quantum discord for two-qubit quantum states. New J. Phys. 13, 073016 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Yao, H.-W. Li, Z.-Q. Yin, Z.-F. Han, Geometric interpretation of the geometric discord. Phys. Lett. A 376, 358 (2012)ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    C. Liu, Y.-L. Dong, S.-Q. Zhu, Geometric discord for non-X states. Chin. Phys. B 23, 060307 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Z. Huang, D. Qiu, P. Mateus, Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    M.S. Sarandy, Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    T. Werlang, C. Trippe, G.A.P. Ribeiro, G. Rigolin, Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    A.K. Pal, I. Bose, Quantum discord in the ground and thermal states of spin clusters. J. Phys. B: At. Mol. Opt. Phys. 44, 045101 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    M.S. Sarandy, T.R. de Oliveira, L. Amico, Quantum discord in the ground state of spin chains. Int. J. Mod. Phys. B 27, 1345030 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    S. Campbell, J. Richens, N. Lo, Gullo and T. Busch. Criticality, factorization, and long-range correlations in the anisotropic XY model. Phys. Rev. A 88, 062305 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    G. Karpat, B. Çakmak, F.F. Fanchini, Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Z. Xi, X.-M. Lu, Z. Sun, Y. Li, Dynamics of quantum discord in a quantum critical environment. J. Phys. B: At. Mol. Opt. Phys. 44, 215501 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Y.-C. Li, H.-Q. Lin, J.-B. Xu, Dynamics of correlations and scaling behaviours in a spin-chain environment. EPL 100, 20002 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    L.-J. Tian, C.-Y. Zhang, L.-G. Qin, Sudden transition in quantum discord dynamics: role of three-site interaction. Chin. Phys. Lett. 30, 050303 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    X.-M. Lu, Z. Xi, Z. Sun, X. Wang, Geometric measure of quantum discord under decoherence. Quantum Inf. Comp. 10, 0994 (2010)MathSciNetzbMATHGoogle Scholar
  40. 40.
    L.-X. Jia, B. Li, R.-H. Yue, H. Fan, Sudden change of quantum discord under single qubit noise. Int. J. Quantum Inf. 11, 1350048 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    F.-J. Jiang, H.-J. Lu, X.-H. Yan, M.-J. Shi, A symmetric geometric measure and the dynamics of quantum discord. Chin. Phys. B 22, 040303 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    J.-L. Guo, H. Li, G.-L. Long, Decoherent dynamics of quantum correlations in qubit–qutrit systems. Quantum Inf. Process. 12, 3421 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    L. Qiu, G. Tang, X. Yang, Z. Xun, B. Ye, A. Wang, Sudden change of quantum discord in qutrit-qutrit system under depolarising noise. Int. J. Theor. Phys. 53, 2769 (2014)zbMATHCrossRefGoogle Scholar
  44. 44.
    B.-L. Ye, Y.-K. Wang, S.-M. Fei, One-way quantum deficit and decoherence for two-qubit X states. Int. J. Theor. Phys. 55, 2237 (2016)zbMATHCrossRefGoogle Scholar
  45. 45.
    J.-D. Shi, D. Wang, Y.-C. Ma, L. Ye, Revival and robustness of Bures distance discord under decoherence channels. Phys. Lett. A 380, 843 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    H.P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    Z.-X. Man, Y.-J. Xia, N.B. An, The transfer dynamics of quantum correlation between systems and reservoirs. J. Phys. B: At. Mol. Opt. Phys. 44, 095504 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    F. Han, The dynamics of quantum correlation and its transfer in dissipative systems. Int. J. Theor. Phys. 50, 1785 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    X.-X. Zhang, F.-L. Li, Controlling transfer of quantum correlations among bi-partitions of a composite quantum system by combining different noisy environments. Chin. Phys. B 20, 110302 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    P. Huang, J. Zhu, X.-X. Qi, G.-Q. He, G.-H. Zeng, Different dynamics of classical and quantum correlations under decoherence. Quantum Inf. Process. 11, 1845 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Z.-D. Hu, J. Wang, Y. Zhang, Y.-Q. Zhang, Dynamics of nonclassical correlations with an initial correlation. J. Phys. Soc. Jpn. 83, 114004 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    H.-S. Xu, J.-B. Xu, Protecting quantum correlations of two qubits in independent non-Markovian environments by bang-bang pulses. J. Opt. Soc. Am. B 29, 2074 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    F.F. Fanchini, E.F. de Lima, L.K. Castelano, Shielding quantum discord through continuous dynamical decoupling. Phys. Rev. A 86, 052310 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    C. Addis, G. Karpat, S. Maniscalco, Time-invariant discord in dynamically decoupled systems. Phys. Rev. A 92, 062109 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    H. Song, Y. Pan, Z. Xi, Dynamical control of quantum correlations in a common environment. Int. J. Quantum Inf. 11, 1350012 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    M.-L. Hu, H. Fan, Robustness of quantum correlations against decoherence. Ann. Phys. 327, 851 (2012)ADSzbMATHCrossRefGoogle Scholar
  57. 57.
    L.C. Céleri, A.G.S. Landulfo, R.M. Serra, G.E.A. Matsas, Sudden change in quantum and classical correlations and the Unruh effect. Phys. Rev. A 81, 062130 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    Z. Tian, J. Jing, How the Unruh effect affects transition between classical and quantum decoherences. Phys. Lett. B 707, 264 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    M. Ramzan, Decoherence dynamics of geometric measure of quantum discord and measurement induced nonlocality for noninertial observers at finite temperature. Quantum Inf. Process. 12, 2721 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Y.Y. Xu, W.L. Yang, M. Feng, Dissipative dynamics of quantum discord under quantum chaotic environment. EPL 92, 10005 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    G. Karpat, Z. Gedik, Correlation dynamics of qubit–qutrit systems in a classical dephasing environment. Phys. Lett. A 375, 4166 (2011)ADSzbMATHCrossRefGoogle Scholar
  62. 62.
    J.-Q. Li, J.-Q. Liang, Quantum and classical correlations in a classical dephasing environment. Phys. Lett. A 375, 1496 (2011)ADSzbMATHCrossRefGoogle Scholar
  63. 63.
    C. Wang, C. Li, L. Nie, X. Li, J. Li, Classical correlation, quantum discord and entanglement for two-qubit system subject to heat bath. Opt. Commun. 284, 2393 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    L. Xu, J.B. Yuan, Q.S. Tan, L. Zhou, L.M. Kuang, Dynamics of quantum discord for two correlated qubits in two independent reservoirs at finite temperature. Eur. Phys. J. D 64, 565 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    Z.X. Man, Y.J. Xia, N.B. An, Quantum dissonance induced by a thermal field and its dynamics in dissipative systems. Eur. Phys. J. D 64, 521 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    X.Q. Yan, Z.L. Yue, Dynamics of quantum and classical correlations of a two-atom system in thermal reservoirs. Chaos Solitons Fractals 57, 117 (2013)ADSzbMATHCrossRefGoogle Scholar
  67. 67.
    B.-Y. Yang, M.-F. Fang, Y.-N. Guo, Dissipative dynamics of quantum discord of two strongly driven qubits. Int. J. Theor. Phys. 53, 921 (2014)zbMATHCrossRefGoogle Scholar
  68. 68.
    M.-L. Hu, D.-P. Tian, Preservation of the geometric quantum discord in noisy environments. Ann. Phys. 343, 132 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    J.-Q. Li, J. Liu, J.-Q. Liang, Environment-induced quantum correlations in a driven two-qubit system. Phys. Scr. 85, 065008 (2012)ADSzbMATHCrossRefGoogle Scholar
  70. 70.
    J.-B. Yuan, L.-M. Kuang, J.-Q. Liao, Amplification of quantum discord between two uncoupled qubits in a common environment by phase decoherence. J. Phys. B: At. Mol. Opt. Phys. 43, 165503 (2010)ADSCrossRefGoogle Scholar
  71. 71.
    X.-P. Liao, J.-S. Fang, M.-F. Fang, B. Liu, Z. Huang, Entanglement and quantum discord dynamics of two atoms in a broadband squeezed vacuum bath. Int. J. Theor. Phys. 52, 1729 (2013)CrossRefGoogle Scholar
  72. 72.
    K. Berrada, Investigation of quantum and classical correlations in a quantum dot system under decoherence. Laser Phys. 23, 095201 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    P. Mazurek, K. Roszak, P. Horodecki, The decay of quantum correlations between quantum dot spin qubits and the characteristics of its magnetic field dependence. EPL 107, 67004 (2014)ADSCrossRefGoogle Scholar
  74. 74.
    Q.-L. He, J.-B. Xu, Sudden transition and sudden change of quantum discord in dissipative cavity quantum electrodynamics system. J. Opt. Soc. Am. B 30, 251 (2013)ADSCrossRefGoogle Scholar
  75. 75.
    V. Eremeev, N. Ciobanu, M. Orszag, Thermal effects on sudden changes and freezing of correlations between remote atoms in a cavity quantum electrodynamics network. Opt. Lett. 39, 2668 (2014)ADSCrossRefGoogle Scholar
  76. 76.
    J.S. Sales, W.B. Cardoso, A.T. Avelar, N.G. de Almeida, Dynamics of nonclassical correlations via local quantum uncertainty for atom and field interacting into a lossy cavity QED. Phys. A 443, 399 (2016)MathSciNetCrossRefGoogle Scholar
  77. 77.
    Q.-L. He, J.-B. Xu, D.-X. Yao, Mediating and inducing quantum correlation between two separated qubits by one-dimensional plasmonic waveguide. Quantum Inf. Process. 12, 3023 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    N. Iliopoulos, A.F. Terzis, V. Yannopapas, E. Paspalakis, Two-qubit correlations via a periodic plasmonic nanostructure. Ann. Phys. 365, 38 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    M.F. Cornelio, O. Jiménez Farías, F.F. Fanchini, I. Frerot, G.H. Aguilar, M.O. Hor-Meyll, M.C. de Oliveira, S.P. Walborn, A.O. Caldeira, P.H. Souto Ribeiro, Emergence of the pointer basis through the dynamics of correlations. Phys. Rev. Lett. 109, 190402 (2012)ADSCrossRefGoogle Scholar
  80. 80.
    K. Roszak, Ł. Cywinśki, The relation between the quantum discord and quantum teleportation: the physical interpretation of the transition point between different quantum discord decay regimes. EPL 112, 10002 (2015)ADSCrossRefGoogle Scholar
  81. 81.
    W. Han, K.-X. Jiang, Y.-J. Zhang, Y.-J. Xia, Quantum speed limits for Bell-diagonal states. Chin. Phys. B 24, 120304 (2015)ADSCrossRefGoogle Scholar
  82. 82.
    K. Kraus, General state changes in quantum theory. Ann. Phys. 64, 311 (1971)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    J. Maziero, The Kraus representation for the dynamics of open quantum systems. Rev. Bras. Ensino Fis. 38, e2307 (2016)Google Scholar
  84. 84.
    J. Maziero, Computing partial traces and reduced density matrices. Int. J. Mod. Phys. C 28, 1750005 (2016)ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, vol. 3 (Addison-Wesley Publishing Company, Massachusetts, 1965)zbMATHGoogle Scholar
  86. 86.
    M. Piani, P. Horodecki, R. Horodecki, No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502 (2008)ADSCrossRefGoogle Scholar
  87. 87.
    S. Luo, W. Sun, Decomposition of bipartite states with applications to quantum no-broadcasting theorems. Phys. Rev. A 82, 012338 (2010)ADSCrossRefGoogle Scholar
  88. 88.
    N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)ADSCrossRefGoogle Scholar
  89. 89.
    B. Groisman, S. Popescu, A. Winter, Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)ADSMathSciNetCrossRefGoogle Scholar
  90. 90.
    V. Vedral, The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)ADSMathSciNetCrossRefGoogle Scholar
  92. 92.
    J. Maziero, Distribution of mutual information in multipartite states. Braz. J. Phys. 44, 194 (2014)ADSCrossRefGoogle Scholar
  93. 93.
    B. Aaronson, R. Lo Franco, G. Compagno, G. Adesso, Hierarchy and dynamics of trace distance correlations. New J. Phys. 15, 093022 (2013)ADSCrossRefGoogle Scholar
  94. 94.
    L. Henderson, V. Vedral, Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    H. Ollivier, W.H. Zurek, Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSzbMATHCrossRefGoogle Scholar
  96. 96.
    J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)ADSzbMATHCrossRefGoogle Scholar
  97. 97.
    S. Luo, Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)ADSCrossRefGoogle Scholar
  98. 98.
    A. Brodutch, D.R. Terno, Quantum discord and local demons. Phys. Rev. A 81, 062103 (2010)ADSMathSciNetCrossRefGoogle Scholar
  99. 99.
    B. Dakić, V. Vedral, Č. Brukner, Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSzbMATHCrossRefGoogle Scholar
  100. 100.
    C.C. Rulli, M.S. Sarandy, Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)ADSCrossRefGoogle Scholar
  101. 101.
    M.D. Lang, C.M. Caves, A. Shaji, Entropic measures of nonclassical correlations. Int. J. Quantum Inf. 09, 1553 (2011)zbMATHCrossRefGoogle Scholar
  102. 102.
    F.M. Paula, T.R. de Oliveira, M.S. Sarandy, Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)ADSCrossRefGoogle Scholar
  103. 103.
    T. Nakano, M. Piani, G. Adesso, Negativity of quantumness and its interpretations. Phys. Rev. A 88, 012117 (2013)ADSCrossRefGoogle Scholar
  104. 104.
    D. Spehner, M. Orszag, Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    A. Farace, A. De Pasquale, L. Rigovacca, V. Giovannetti, Discriminating strength: a bona fide measure of non- classical correlations. New J. Phys. 16, 073010 (2014)ADSCrossRefGoogle Scholar
  106. 106.
    W. Roga, S.M. Giampaolo, F. Illuminati, Discord of response. J. Phys. A: Math. Theor. 47, 365301 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    U. Singh, A.K. Pati, Super quantum discord with weak measurements. Ann. Phys. 343, 141 (2014)ADSzbMATHCrossRefGoogle Scholar
  108. 108.
    S.J. Akhtarshenas, H. Mohammadi, S. Karimi, Z. Azmi, Computable measure of quantum correlation. Quantum Inf. Process. 14, 247 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    H. Cao, Z.-Q. Wu, L.-Y. Hu, X.-X. Xu, J.-H. Huang, An easy measure of quantum correlation. Quantum Inf. Process. 14, 4103 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    A.L.O. Bilobran, R.M. Angelo, A measure of physical reality. Europhys. Lett. 112, 40005 (2015)ADSCrossRefGoogle Scholar
  111. 111.
    K.P. Seshadreesan, M. Berta, M.M. Wilde, Rényi squashed entanglement, discord, and relative entropy differences. J. Phys. A: Math. Theor. 48, 395303 (2015)zbMATHCrossRefGoogle Scholar
  112. 112.
    L. Li, Q.-W. Wang, S.-Q. Shen, M. Li, Geometric measure of quantum discord with weak measurements. Quantum Inf. Process. 15, 291 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    A. Brodutch, K. Modi, Criteria for measures of quantum correlations. Quantum Inf. Comp. 12, 0721 (2012)MathSciNetzbMATHGoogle Scholar
  114. 114.
    F.M. Paula, A. Saguia, T.R. de Oliveira, M.S. Sarandy, Overcoming ambiguities in classical and quantum correlation measures. EPL 108, 10003 (2014)ADSCrossRefGoogle Scholar
  115. 115.
    S. Luo, Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)ADSCrossRefGoogle Scholar
  116. 116.
    S. Luo, Q. Zhang, Observable correlations in two-qubit states. J. Stat. Phys. 136, 165 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    J. Maziero, L.C. Céleri, R.M. Serra, Symmetry Aspects of Quantum Discord (2010).
  118. 118.
    I. Marvian, R.W. Spekkens, Extending Noether’s theorem by quantifying the asymmetry of quantum states. Nat. Commun. 5, 3821 (2014)ADSCrossRefGoogle Scholar
  119. 119.
    J.-S. Xu, X.-Y. Xu, C.-F. Li, C.-J. Zhang, X.-B. Zou, G.-C. Guo, Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)Google Scholar
  120. 120.
    L. Mazzola, J. Piilo, S. Maniscalco, Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)ADSMathSciNetCrossRefGoogle Scholar
  121. 121.
    R. Auccaise, L.C. Céleri, D.O. Soares-Pinto, E.R. deAzevedo, J. Maziero, A.M. Souza, T.J. Bonagamba, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Environment-induced sudden transition in quantum discord dynamics. Phys. Rev. Lett. 107, 140403 (2011)ADSCrossRefGoogle Scholar
  122. 122.
    D.O. Soares-Pinto, M.H.Y. Moussa, J. Maziero, E.R. deAzevedo, T.J. Bonagamba, R.M. Serra, L.C. Céleri, Equivalence between Redfield- and master-equation approaches for a time-dependent quantum system and coherence control. Phys. Rev. A 83, 062336 (2011)ADSCrossRefGoogle Scholar
  123. 123.
    D.O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R.M. Serra, L.C. Céleri, On the quantumness of correlations in nuclear magnetic resonance. Phil. Trans. R. Soc. A 370, 4821 (2012)ADSzbMATHCrossRefGoogle Scholar
  124. 124.
    J. Maziero, R. Auccaise, L.C. Céleri, D.O. Soares-Pinto, E.R. deAzevedo, T. Bonagamba, R. Sarthour, I. Oliveira, R. Serra, Quantum discord in nuclear magnetic resonance systems at room temperature. Braz. J. Phys. 43, 86 (2013)ADSCrossRefGoogle Scholar
  125. 125.
    H.D. Zeh, On the interpretation of measurement in quantum theory. Found. Phys. 1, 69 (1970)ADSCrossRefGoogle Scholar
  126. 126.
    W.H. Zurek, Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516 (1981)ADSMathSciNetCrossRefGoogle Scholar
  127. 127.
    W.H. Zurek, Quantum Darwinism. Nat. Phys. 5, 181 (2009)CrossRefGoogle Scholar
  128. 128.
    E. Schrödinger, Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31, 555 (1935)ADSzbMATHCrossRefGoogle Scholar
  129. 129.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955)zbMATHGoogle Scholar
  130. 130.
    W.H. Zurek, Reduction of the wave packet: How long does it take?, in Frontiers of Nonequilibrium Statistical Physics, ed. by P. Meystre, M.O. Scully (Plenum, New York, 1984)Google Scholar
  131. 131.
    C. Monroe, D.M. Meekhof, B.E. King, D.J. Wineland, A "Schrödinger Cat" superposition state of an atom. Science 272, 1131 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    A.C.S. Costa, R.M. Angelo, M.W. Beims, Monogamy and backflow of mutual information in non-Markovian thermal baths. Phys. Rev. A 90, 012322 (2014)ADSCrossRefGoogle Scholar
  133. 133.
    M. Fuchs, J. Schliemann, B. Trauzettel, Ultra long spin decoherence times in graphene quantum dots with a small number of nuclear spins. Phys. Rev. B 88, 245441 (2013)ADSCrossRefGoogle Scholar
  134. 134.
    F.M. Paula, I.A. Silva, J.D. Montealegre, A.M. Souza, E.R. deAzevedo, R.S. Sarthour, A. Saguia, I.S. Oliveira, D.O. Soares-Pinto, G. Adesso, M.S. Sarandy, Observation of environment-induced double sudden transitions in geometric quantum correlations. Phys. Rev. Lett. 111, 250401 (2013)ADSCrossRefGoogle Scholar
  135. 135.
    P.C. Obando, F.M. Paula, M.S. Sarandy, Trace-distance correlations for X states and emergence of the pointer basis in Markovian and non-Markovian regimes. Phys. Rev. A 92, 032307 (2015)ADSCrossRefGoogle Scholar
  136. 136.
    F. Lastra, C.E. López, S.A. Reyes, S. Wallentowitz, Emergence of metastable pointer states basis in non-Markovian quantum dynamics. Phys. Rev. A 90, 062103 (2014)ADSCrossRefGoogle Scholar
  137. 137.
    H.-P. Breuer, F. Petruccine, The theory of open quantum systems (Oxford University Press, Oxford, 2012)Google Scholar
  138. 138.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976)ADSCrossRefGoogle Scholar
  139. 139.
    B. You, L.-X. Cen, Necessary and sufficient conditions for the freezing phenomena of quantum discord under phase damping. Phys. Rev. A 86, 012102 (2012)ADSCrossRefGoogle Scholar
  140. 140.
    B. Aaronson, R. Lo Franco, G. Adesso, Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88, 012120 (2013)ADSCrossRefGoogle Scholar
  141. 141.
    T. Chanda, A.K. Pal, A. Biswas, A. Sen(De), U. Sen, Freezing of quantum correlations under local decoherence. Phys. Rev. A 91, 062119 (2015)ADSCrossRefGoogle Scholar
  142. 142.
    J. Maziero, T. Werlang, F.F. Fanchini, L.C. Céleri, R.M. Serra, System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)ADSCrossRefGoogle Scholar
  143. 143.
    P. Deb, M. Banik, Role of complementary correlations in the evolution of classical and quantum correlations under Markovian decoherence. J. Phys. A: Math. Theor. 48, 185303 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    K. Roszak, L. Cywiński, The relation between the quantum discord and quantum teleportation: the physical interpretation of the transition point between different quantum discord decay regimes. EPL 112, 10002 (2015)ADSCrossRefGoogle Scholar
  145. 145.
    B. Wang, Z.-Y. Xu, Z.-Q. Chen, M. Feng, Non-Markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010)ADSCrossRefGoogle Scholar
  146. 146.
    F.F. Fanchini, T. Werlang, C.A. Brasil, L.G.E. Arruda, A.O. Caldeira, Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)ADSCrossRefGoogle Scholar
  147. 147.
    L. Mazzola, J. Piilo, S. Maniscalco, Frozen discord in non-Markovian depolarizing channels. Int. J. Quant. Inf. 9, 981 (2011)zbMATHCrossRefGoogle Scholar
  148. 148.
    J.-S. Xu, C.-F. Li, C.-J. Zhang, X.-Y. Xu, Y.-S. Zhang, G.-C. Guo, Experimental investigation of the non-Markovian dynamics of classical and quantum correlations. Phys. Rev. A 82, 042328 (2010)ADSCrossRefGoogle Scholar
  149. 149.
    Z.Y. Xu, W.L. Yang, X. Xiao, M. Feng, Comparison of different measures for quantum discord under non-Markovian noise. J. Phys. A: Math. Theor. 44, 395304 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  150. 150.
    L. Chuan-Feng, W. Hao-Tian, Y. Hong-Yuan, G. Rong-Chun, G. Guang-Can, Non-Markovian dynamics of quantum and classical correlations in the presence of system-bath coherence. Chin. Phys. Lett. 28, 120302 (2011)CrossRefGoogle Scholar
  151. 151.
    C.-S. Yu, B. Li, H. Fan, The witness of sudden change of geometric quantum correlation. Quantum Inf. Comput. 14, 0454 (2013)MathSciNetGoogle Scholar
  152. 152.
    M. Cianciaruso, T.R. Bromley, W. Roga, R. Lo Franco, G. Adesso, Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)ADSCrossRefGoogle Scholar
  153. 153.
    A.C.S. Costa, M.W. Beims, R.M. Angelo, Generalized discord, entanglement, Einstein-Podolsky-Rosen steering, and Bell nonlocality in two-qubit systems under (non-)Markovian channels: Hierarchy of quantum resources and chronology of deaths and births (2016).
  154. 154.
    B.-C. Ren, H.-R. Wei, F.-G. Deng, Correlation dynamics of a two-qubit system in a Bell-diagonal state under non-identical local noises. Quantum Inf. Process. 13, 1175 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  155. 155.
    P. Haikka, T.H. Johnson, S. Maniscalco, Non-Markovianity of local dephasing channels and time-invariant discord. Phys. Rev. A 87, 010103(R) (2013)ADSCrossRefGoogle Scholar
  156. 156.
    J.D. Montealegre, F.M. Paula, A. Saguia, M.S. Sarandy, One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)ADSCrossRefGoogle Scholar
  157. 157.
    F.F. Fanchini, T. Werlang, C.A. Brasil, L.G.E. Arruda, A.O. Caldeira, Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)ADSCrossRefGoogle Scholar
  158. 158.
    F. Ciccarello, T. Tufarelli, V. Giovannetti, Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)ADSCrossRefGoogle Scholar
  159. 159.
    J. Maziero, Non-monotonicity of trace distance under tensor products. Braz. J. Phys. 45, 560 (2015)ADSCrossRefGoogle Scholar
  160. 160.
    H. Yuan, L.-F. Wei, Geometric measure of quantum discord under decoherence and the relevant factorization law. Int. J. Theor. Phys. 52, 987 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  161. 161.
    V. Eremeev, N. Ciobanu, M. Orszag, Thermal effects on the sudden changes and freezing of correlations between remote atoms in cavity QED network. Opt. Lett. 39, 2668 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Departamento de Física, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrazil
  3. 3.Instituto de Física, Facultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations