Advertisement

Discord, Quantum Knowledge and Private Communications

  • Mile Gu
  • Stefano PirandolaEmail author
Chapter
Part of the Quantum Science and Technology book series (QST)

Abstract

In this brief review, we discuss the role that quantum correlations, as quantified by quantum discord, play in two interesting settings. The first one is discerning which unitaries have been applied on a quantum system, by taking advantage of knowledge regarding its initial configuration. Here discord captures the ‘quantum’ component of this knowledge, useful only when we have access to a quantum memory. In particular, discord can be used to detect whether an untrusted party has certain quantum capabilities. The second setting is quantum cryptography. Here discord represents an important resource for trusted-noise quantum key distribution and also provides a general upper bound for the optimal secret key rates that are achievable by ideal protocols. In particular, the (two-way assisted) secret key capacity of a lossy bosonic channel exactly coincides with the maximum discord that can be distributed between the remote parties at the two ends of the channel.

Notes

Acknowledgements

Authors acknowledge financial support from the National Research Foundation of Singapore (NRF), NRF-Fellowship (Reference No: NRF-NRFF2016-02), the John Templeton Foundation (Grant No 54914) and the EPSRC via the ‘UK Quantum Communications Hub’ (EP/M013472/1).

References

  1. 1.
    M. Berta et al., Nat. Phys. 6, 659–662 (2011)CrossRefGoogle Scholar
  2. 2.
    K. Modi et al., Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    M. Gu et al., Nat. Phys. 8, 671–675 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Almeida et al., Phys. Rev. A 89, 042323 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    V. Scarani et al., Rev. Mod. Phys. 81, 1301 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    C. Weedbrook, S. Pirandola, R. Garcia-Patron, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Rev. Mod. Phys. 84, 621 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    R. Renner, N. Gisin, B. Kraus, Phys. Rev. A 72, 012332 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    S. Pirandola, R. García-Patrón, S.L. Braunstein, S. Lloyd, Phys. Rev. Lett. 102, 050503 (2009)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    S.L. Braunstein, S. Pirandola, Phys. Rev. Lett. 108, 130502 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S.L. Braunstein, S. Lloyd, T. Gehring, C.S. Jacobsen, U.L. Andersen, Nat. Photonics 9, 397–402 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    R. Filip, Phys. Rev. A 77, 022310 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    V.C. Usenko, R. Filip, Phys. Rev. A 81, 022318 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    C. Weedbrook, S. Pirandola, S. Lloyd, T.C. Ralph, Phys. Rev. Lett. 105, 110501 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    C. Weedbrook, S. Pirandola, T.C. Ralph, Phys. Rev. A 86, 022318 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    C. Weedbrook, C. Ottaviani, S. Pirandola, Phys. Rev. A 89, 012309 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    S. Pirandola, Quantum discord as a resource for quantum cryptography. Sci. Rep. 4, 6956 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    B. Schumacher, M.A. Nielsen, Phys. Rev. A 54, 2629 (1996)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Lloyd, Phys. Rev. A 55, 1613 (1997)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Pirandola, R. García-Patrón, S.L. Braunstein, S. Lloyd, Phys. Rev. Lett. 102, 050503 (2009)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    R. García-Patrón, S. Pirandola, S. Lloyd, J.H. Shapiro, Phys. Rev. Lett. 102, 210501 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Pirandola, R. Laurenza, C. Ottaviani, L. Banchi, Fundamental Limits of Repeaterless Quantum Communications (2015). Preprint arXiv:1510.08863
  24. 24.
    S. Pirandola, Capacities of Repeater-Assisted Quantum Communications (2016). Preprint arXiv:1601.00966
  25. 25.
    C. Choi, Linear Algebra Appl. 10, 285–290 (1975)MathSciNetCrossRefGoogle Scholar
  26. 26.
    S.L. Braunstein, H.J. Kimble, Phys. Rev. Lett. 80, 869–872 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    S. Pirandola et al., Nat. Photon 9, 641–652 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    V. Vedral, M.B. Plenio, M.A. Rippin, P.L. Knight, Phys. Rev. Lett. 78, 2275–2279 (1997)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    V. Vedral, M.B. Plenio, Phys. Rev. A 57, 1619 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    V. Vedral, Rev. Mod. Phys. 74, 197 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  2. 2.Complexity InstituteNanyang Technological UniversitySingaporeSingapore
  3. 3.Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore
  4. 4.Computer Science & York Centre for Quantum TechnologiesUniversity of YorkYorkUK

Personalised recommendations