Advertisement

Entanglement Distribution and Quantum Discord

  • Alexander StreltsovEmail author
  • Hermann Kampermann
  • Dagmar Bruß
Chapter
Part of the Quantum Science and Technology book series (QST)

Abstract

Establishing entanglement between distant parties is one of the most important problems of quantum technology, since long-distance entanglement is an essential part of such fundamental tasks as quantum cryptography or quantum teleportation. In this lecture we review basic properties of entanglement and quantum discord, and discuss recent results on entanglement distribution and the role of quantum discord therein. We also review entanglement distribution with separable states, and discuss important problems which still remain open. One such open problem is a possible advantage of indirect entanglement distribution, when compared to direct distribution protocols.

Notes

Acknowledgements

We thank Remigiusz Augusiak, Maciej Demianowicz, Jens Eisert, and Maciej Lewenstein for discussion. This work was supported by the Alexander von Humboldt-Foundation, Bundesministerium für Bildung und Forschung, and Deutsche Forschungsgemeinschaft.

References

  1. 1.
    H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    A. Streltsov, Quantum Correlations Beyond Entanglement and their Role in Quantum Information Theory (SpringerBriefs in Physics, 2015). arXiv:1411.3208
  5. 5.
    G. Adesso, T.R. Bromley, M. Cianciaruso, J. Phys. A 49, 473001 (2016). arXiv:1605.00806
  6. 6.
    T.S. Cubitt, F. Verstraete, W. Dür, J.I. Cirac, Phys. Rev. Lett. 91, 037902 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    A. Streltsov, H. Kampermann, D. Bruß, Phys. Rev. Lett. 108, 250501 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    T.K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, M. Piani, Phys. Rev. Lett. 109, 070501 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    A. Kay, Phys. Rev. Lett. 109, 080503 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A. Streltsov, H. Kampermann, D. Bruß, Phys. Rev. A 90, 032323 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    A. Streltsov, R. Augusiak, M. Demianowicz, M. Lewenstein, Phys. Rev. A 92, 012335 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    M. Zuppardo, T. Krisnanda, T. Paterek, S. Bandyopadhyay, A. Banerjee, P. Deb, S. Halder, K. Modi, M. Paternostro, Phys. Rev. A 93, 012305 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    A. Fedrizzi, M. Zuppardo, G.G. Gillett, M.A. Broome, M.P. Almeida, M. Paternostro, A.G. White, T. Paterek, Phys. Rev. Lett. 111, 230504 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    C.E. Vollmer, D. Schulze, T. Eberle, V. Händchen, J. Fiurášek, R. Schnabel, Phys. Rev. Lett. 111, 230505 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    C. Peuntinger, V. Chille, L. Mišta, N. Korolkova, M. Förtsch, J. Korger, C. Marquardt, G. Leuchs, Phys. Rev. Lett. 111, 230506 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    C. Silberhorn, Physics 6, 132 (2013)CrossRefGoogle Scholar
  17. 17.
    R.F. Werner, Phys. Rev. A 40, 4277 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    M. Piani, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 100, 090502 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    A. Ferraro, L. Aolita, D. Cavalcanti, F.M. Cucchietti, A. Acín, Phys. Rev. A 81, 052318 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    D. Bruß, J. Math. Phys. 43, 4237 (2002)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M.B. Plenio, S. Virmani, Quantum Inf. Comput. 7, 1 (2007). arXiv:org/abs/quant-ph/9701014 MathSciNetGoogle Scholar
  22. 22.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    V. Vedral, M.B. Plenio, M.A. Rippin, P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    V. Vedral, M.B. Plenio, Phys. Rev. A 57, 1619 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    Note that some entanglement measures (like distillable entanglement and logarithmic negativity) also vanish for some entangled statesGoogle Scholar
  26. 26.
    For a general pure state \({|{\psi }\rangle }\) we will denote the corresponding projector by \(\psi \), i.e., \(\psi ={|{\psi }\rangle } {\langle {\psi }|}\) Google Scholar
  27. 27.
    C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53, 2046 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 80, 5239 (1998)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Note that \(D(\rho ,\sigma )\) does not have to be a distance in the mathematical sense, since it does not necessarily fulfill the triangle inequalityGoogle Scholar
  30. 30.
    A. Uhlmann, Open Syst. Inf. Dyn. 5, 209 (1998). arXiv:org/abs/quant-ph/9701014 CrossRefGoogle Scholar
  31. 31.
    C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824 (1996)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 84, 2014 (2000)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    P.M. Hayden, M. Horodecki, B.M. Terhal, J. Phys. A 34, 6891 (2001)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    T.-C. Wei, P.M. Goldbart, Phys. Rev. A 68, 042307 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    A. Streltsov, H. Kampermann, D. Bruß, New J. Phys. 12, 123004 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    K. Życzkowski, P. Horodecki, A. Sanpera, M. Lewenstein, Phys. Rev. A 58, 883 (1998)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    P. Horodecki, Phys. Lett. A 232, 333 (1997)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M.B. Plenio, Phys. Rev. Lett. 95, 090503 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    K. Audenaert, M.B. Plenio, J. Eisert, Phys. Rev. Lett. 90, 027901 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    P.W. Shor, J.A. Smolin, B.M. Terhal, Phys. Rev. Lett. 86, 2681 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    A. Streltsov, W.H. Zurek, Phys. Rev. Lett. 111, 040401 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    A. Streltsov, S. Lee, G. Adesso, Phys. Rev. Lett. 115, 030505 (2015)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    An entanglement breaking channel \(\Lambda _{\rm eb}\) has the property that Open image in new window is not entangled for any bipartite input state \(\rho \). We refer to [74] for more detailsGoogle Scholar
  45. 45.
    A. Datta (2010). arXiv:1003.5256
  46. 46.
    M. Koashi, A. Winter, Phys. Rev. A 69, 022309 (2004)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    F.F. Fanchini, M.F. Cornelio, M.C. de Oliveira, A.O. Caldeira, Phys. Rev. A 84, 012313 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Interestingly, Eq. (19) implies that a simple formula for quantum discord for all quantum states is out of reach, since such an expression would also allow for an exact evaluation of entanglement of formation. Nevertheless, analytical progress on the evaluation of discord for particular families of states has been presented in [87–89]Google Scholar
  49. 49.
    Many authors also consider the minimal distance to the set of CQ states, i.e., \(\Delta (\rho )={\rm inf}_{\sigma \in \cal{CQ}}D(\rho ,\sigma )\). We note that \(\Delta \) and \(\cal{D}\) coincide for the quantum relative entropy, and \(\Delta (\rho )\le \cal{D}(\rho )\) in general [3]Google Scholar
  50. 50.
    K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Phys. Rev. Lett. 104, 080501 (2010)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 89, 180402 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen(De), U. Sen, B. Synak-Radtke, Phys. Rev. A 71, 062307 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    B. Dakić, V. Vedral, Č. Brukner, Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    S. Luo, S. Fu, Phys. Rev. A 82, 034302 (2010)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    M. Piani, Phys. Rev. A 86, 034101 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, P. Walther, Nat. Phys. 8, 666 (2012)CrossRefGoogle Scholar
  57. 57.
    A. Brodutch, K. Modi, Quantum Inf. Comput. 12, 0721 (2012). arXiv:1108.3649 MathSciNetGoogle Scholar
  58. 58.
    D. Girolami, A.M. Souza, V. Giovannetti, T. Tufarelli, J.G. Filgueiras, R.S. Sarthour, D.O. Soares-Pinto, I.S. Oliveira, G. Adesso, Phys. Rev. Lett. 112, 210401 (2014)ADSCrossRefGoogle Scholar
  59. 59.
    K. Modi, H. Cable, M. Williamson, V. Vedral, Phys. Rev. X 1, 021022 (2011)Google Scholar
  60. 60.
    D. Girolami, T. Tufarelli, G. Adesso, Phys. Rev. Lett. 110, 240402 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    A. Streltsov, H. Kampermann, D. Bruß, Phys. Rev. Lett. 106, 160401 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    M. Piani, S. Gharibian, G. Adesso, J. Calsamiglia, P. Horodecki, A. Winter, Phys. Rev. Lett. 106, 220403 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    G. Adesso, V. D’Ambrosio, E. Nagali, M. Piani, F. Sciarrino, Phys. Rev. Lett. 112, 140501 (2014)ADSCrossRefGoogle Scholar
  64. 64.
    A. Streltsov, G. Adesso, M. Piani, D. Bruß, Phys. Rev. Lett. 109, 050503 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    H.S. Dhar, A.K. Pal, D. Rakshit, A. Sen(De), U. Sen (2016). arXiv:1610.01069
  66. 66.
    A. Streltsov, H. Kampermann, D. Bruß, Phys. Rev. Lett. 107, 170502 (2011)ADSCrossRefGoogle Scholar
  67. 67.
    F.F. Fanchini, T. Werlang, C.A. Brasil, L.G.E. Arruda, A.O. Caldeira, Phys. Rev. A 81, 052107 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    R. Auccaise, J. Maziero, L.C. Céleri, D.O. Soares-Pinto, E.R. deAzevedo, T.J. Bonagamba, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Phys. Rev. Lett. 107, 070501 (2011)ADSCrossRefGoogle Scholar
  69. 69.
    D. Girolami, G. Adesso, Phys. Rev. Lett. 108, 150403 (2012)ADSCrossRefGoogle Scholar
  70. 70.
    M. Gessner, M. Ramm, T. Pruttivarasin, A. Buchleitner, H.-P. Breuer, H. Häffner, Nat. Phys. 10, 105 (2014)CrossRefGoogle Scholar
  71. 71.
    M. Ziman, V. Bužek (2007). arXiv:0707.4401
  72. 72.
    R. Pal, S. Bandyopadhyay, S. Ghosh, Phys. Rev. A 90, 052304 (2014)ADSCrossRefGoogle Scholar
  73. 73.
    The authors of [72] proved this statement for negativity \(\cal{N}\), which is related to the logarithmic negativity as \(\cal{E}_{\rm n}={\rm log}_{2}(2\cal{N}+1)\). Since \(\cal{N}\) is a nondecreasing function of \(\cal{E}_{\rm n}\), it follows that the statement is also true for the logarithmic negativityGoogle Scholar
  74. 74.
    M. Horodecki, P.W. Shor, M.B. Ruskai, Rev. Math. Phys. 15, 629 (2003)MathSciNetCrossRefGoogle Scholar
  75. 75.
    L. Mišta Jr., N. Korolkova, Phys. Rev. A 77, 050302 (2008)ADSMathSciNetCrossRefGoogle Scholar
  76. 76.
    T. Baumgratz, M. Cramer, M.B. Plenio, Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  77. 77.
    A. Winter, D. Yang, Phys. Rev. Lett. 116, 120404 (2016)ADSCrossRefGoogle Scholar
  78. 78.
    A. Streltsov, G. Adesso, M.B. Plenio (2016). arXiv:1609.02439
  79. 79.
    T.R. Bromley, M. Cianciaruso, G. Adesso, Phys. Rev. Lett. 114, 210401 (2015)ADSCrossRefGoogle Scholar
  80. 80.
    A. Streltsov, U. Singh, H.S. Dhar, M.N. Bera, G. Adesso, Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar
  81. 81.
    E. Chitambar, A. Streltsov, S. Rana, M.N. Bera, G. Adesso, M. Lewenstein, Phys. Rev. Lett. 116, 070402 (2016)ADSCrossRefGoogle Scholar
  82. 82.
    J. Ma, B. Yadin, D. Girolami, V. Vedral, M. Gu, Phys. Rev. Lett. 116, 160407 (2016)ADSCrossRefGoogle Scholar
  83. 83.
    E. Chitambar, M.-H. Hsieh, Phys. Rev. Lett. 117, 020402 (2016)ADSCrossRefGoogle Scholar
  84. 84.
    J.M. Matera, D. Egloff, N. Killoran, M.B. Plenio, Quantum Sci. Technol. 1, 01LT01 (2016)Google Scholar
  85. 85.
    A. Streltsov, S. Rana, M.N. Bera, M. Lewenstein, Phys. Rev. X 7, 011024 (2017). arXiv:1509.07456
  86. 86.
    B. Yadin, J. Ma, D. Girolami, M. Gu, V. Vedral, Phys. Rev. X 6, 041028 (2016). arXiv:1512.02085
  87. 87.
    M. Ali, A.R.P. Rau, G. Alber, Phys. Rev. A 81, 042105 (2010)ADSCrossRefGoogle Scholar
  88. 88.
    M. Ali, A.R.P. Rau, G. Alber, Phys. Rev. A 82, 069902 (2010)ADSCrossRefGoogle Scholar
  89. 89.
    D. Girolami, G. Adesso, Phys. Rev. A 83, 052108 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexander Streltsov
    • 1
    Email author
  • Hermann Kampermann
    • 2
  • Dagmar Bruß
    • 2
  1. 1.Dahlem Center for Complex Quantum SystemsFreie Universität BerlinBerlinGermany
  2. 2.Institut für Theoretische Physik IIIHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations