Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 474 Accesses

Abstract

This chapter presents a summary of the findings of this research. The area of work analysed are: a novel ultrasonic mathematical model for the analysis of Non-Newtonian fluids, the development of the matching layer technique as a novel sensing technique to measure viscosity and the application of this technique to a journal bearing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S. Bair, High Pressure Rheology for Quantitative Elastohydrodynamics, vol. 54 (Elsevier, 2007)

    Google Scholar 

  • W.P. Cox, E.H. Merz, Correlation of dynamic and steady flow viscosities. J. Polym. Sci. 28(118), 619–622 (1958)

    Article  Google Scholar 

Uncited References

  • L.A. Ahlberg, F. Cohen-Tenoudji, High temperature ultrasonic viscometer. US Patent Number 4779452, 1988

    Google Scholar 

  • V. Buckin, E. Kudryashov, Ultrasonic shear wave rheology of weak particle gels. Adv. Colloid Interface Sci. 89–90, 401–422 (2001)

    Google Scholar 

  • S. Dabir, et al., Viscosity of Liquids: Theory, Estimation, Experiment and Data, 2nd edn. (Springer, 2010)

    Google Scholar 

  • A.S. Dukhin, P.J. Goetz, Bulk viscosity and compressibility measurement using acoustic spectroscopy. J. Chem. Phys. 130 (2009)

    Google Scholar 

  • R.S. Dwyer-Joyce, S. Kasolang, Viscosity measurement in thin ubricant films using shear ultrasonic reflection. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 222(3), 423–429 (2008)

    Google Scholar 

  • E.E. Franco, J.C. Adamowski, Viscosity measurement of Newtonian liquids using the complex reflection coefficient. IEEE Trans. Ultrason. Ferroelectri. Freq. Control. 55(10), 2247–2253 (2008)

    Google Scholar 

  • J.A. Greenwood, J.B.P. Williamson, Contact of nominally flat surfaces. Proc. R. Soc. Lond. 295, 300–319 (1966)

    Google Scholar 

  • M.I. Haller, B.T. Khuri-Yakub, 1-3 air composite for ultrasonic air transducers. Ultrason. Symp. 937–939 (1992)

    Google Scholar 

  • B.J. Hamrock, D. Dowson, Ball Bearing Lubrication, the Elastohydrodynamic of Elliptical Contacts, 1st edn. (Willey, 1981)

    Google Scholar 

  • U. Kaatze, R. Behrends, A high frequency shear wave impedance spectrometer for low viscosity liquids. Measur. Sci. Technol. 12(4) (2001)

    Google Scholar 

  • L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of acoustics. Fundamentals of Acoustics, vol. 560, 4th edn., by L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders (Wiley-VCH, December 1999), pp. 560. ISBN 0-471-84789-5

    Google Scholar 

  • W.P. Mason, W.O. Baker, H.J. McSkimin, et al., Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies. Phys. Rev. 75(6), 936–946 (1948)

    Google Scholar 

  • R.M. Mortier, M.F. Fox, S.T. Orszulik, Chemistry and Technology of Lubricants (Springer, Heidelberg, 2010)

    Google Scholar 

  • R.A. Reich, et al., Base oil properties of ionic liquids. Lubr. Eng. 59(7), 16–21 (2003)

    Google Scholar 

  • V.V. Shah, K. Balasubramaniam, Measuring Newtonian viscosity from the phase of reflected ultrasonic shear wave. Ultrasonics. 38(9), 921–927 (2000)

    Google Scholar 

  • E. Smith, The importance of viscosity. Ind. Lubr. Tribol. 14, 18–26 (1962)

    Google Scholar 

  • K. Yasuda, R.C. Armstrong, R.E. Cohen, Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol. Atcta 20, 163–178 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Schirru .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schirru, M. (2017). Conclusions. In: Development of an Ultrasonic Sensing Technique to Measure Lubricant Viscosity in Engine Journal Bearing In-Situ. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-53408-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53408-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53407-7

  • Online ISBN: 978-3-319-53408-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics