Advertisement

Satellite Tracking of White-Tailed Sea Eagles in Mecklenburg-Western Pomerania and Brandenburg

  • Oliver KroneEmail author
  • Gabriele Treu
  • Thomas Grünkorn
Chapter

Abstract

The increase of wind power plants as a German strategy to develop green, renewable energy in order to overcome energy produced by nuclear power and fossil energy sources leads to a substantial collision risk for the white-tailed sea eagle. The aim of our study was to understand how frequently and under which circumstances eagles approach wind turbines in order to assess and minimize the collision risk in the future by means of satellite telemetry and behavioural observations. One territorial adult, two sub-adults and one immature bird have been fitted with satellite transmitters between 2007 and 2010. Additionally telemetry data of three adult birds and another 13 young eagles, which have been tagged for other projects between 2003 and 2010, has been evaluated for the first time in the present research project. In the evaluation no avoidance behaviour of the adult bird towards wind turbines could be identified for the different calculated home ranges by comparing average distances to random distances. The number of locations per km2 is significantly higher within the wind farm area than in the reference area (cropland without wind turbine). Thus on average, the adult bird returned more locations within the risk area than statistically expected. One of the three tagged eaglets has been recorded within a wind farm during the period of transmission. GPS data as well as visual observations have shown that the young bird repeatedly traversed the wind farm in the vicinity of its nest and showed no fear of the turbines. Although all three tagged young eagles (immature and sub-adult) had very large home ranges and might have crossed a number of wind farms, only one individual approached the risk area of a wind turbine. Among the attractive structures were: kettle holes, ponds, large bodies of water, perching trees on forest edges and local elevations. To estimate a possible collision risk with a wind turbine in the vicinity of the nest, the proportion of locations at a distance of 3000 m was looked at, a distance which is discussed in the recommendations for distances of wind turbines to important areas for birds by the Working Group of German State Bird Conservancies. The adult white-tailed sea eagle equipped with a satellite transmitter in this study showed only 17.3% of the locations in an area of 3000 m around the nest. Half (50%) of the localizations occur within a distance of 7486 m. The analysis of locations of another three territorial white-tailed sea eagles, which was satellite tagged for other studies, resulted in 80% locations in an area of 3000 m around the nest, 87% locations up to 3000 m and in one case even 98% of the recorded locations at distances up to 3000 m around the nest. The mean of all locations at distances from 50 m and up to 3000 m around the nest is 71% for all four white-tailed sea eagles. As a large proportion of the recorded locations of tagged adult birds can be found at a distance of 3000 m around the nest, the probability that the eagles enter the area of a wind turbine decreases significantly with increasing distance. If however, a preferred flight path towards a foraging habitat will be obstructed by a wind turbine, the probability of contact with wind turbines is increasing.

Keywords

Home Range Wind Turbine Wind Farm Risk Area Adult Bird 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to the Nossentiner/Schwinzer Heide National Park Administration and the Müritz National Park Administration for the logistic support. We feel obliged to the State Forest Administrations of Brandenburg, Mecklenburg-Western Pomerania and Schleswig-Holstein and to all forestry offices providing us with game. Furthermore we would like to thank all farmers and wind farm operators for granting access to the wind farms. Special thanks are due to all helpers and members of staff supporting us in the project, especially to Mirjam Gippert and Heiner Schumann. Finally we are grateful to Hubertus Illner for helpful comments improving the quality of the manuscript.

References

  1. Albrecht R, Knief W, Mertens I, Göttsche M, Götsche M (2006) Empfehlungen zur Berücksichtigung tierökologischer Belange bei Windenergieplanungen in Schleswig-Holstein. Landesamtes für Umwelt und Natur des Landes Schleswig-Holstein, FlintbekGoogle Scholar
  2. Altenkamp R, Stoewe D, Krone O (2007) Verlauf und Scheitern einer Brut des Seeadlers (Haliaeetus albicilla) in Berlin und Konsequenzen für den Schutz der Brutplätze. Berliner ornithologische Berichte 17:31–41Google Scholar
  3. Barrios L, Rodriguez A (2004) Behavioural and environmental correlates of soaring-bird mortality at on-shore turbines. J Appl Ecol 41:72–81Google Scholar
  4. Bevanger K, Follestad A, Gjershaug JO, Halley D, Hansen F, Johnson L, May R, Nygård T, Pedersen HC, Reitan O, Steinheim Y (2008) Pre- and post-construction studies of conflicts between birds and wind turbines in coastal Norway. Status report, NINA Report, Trondheim, pp 355Google Scholar
  5. Bevanger K, Berntsen F, Clausen S, Dahl EL, Flagstad Ø, Follestad A, Halley D, Hanssen F, Hoel PL, Johnsen L, Kvaløy P, May R, Nygård T, Pedersen HC, Reitan O, Steinheim Y, Vang R (2009) Pre- and post-construction studies of conflicts between birds and wind turbines in coastal Norway (BirdWind). Progress Report 2009. NINA Report 505, Trondheim, pp 70Google Scholar
  6. Bloom P, Clark WS, Kidd JW (2007) Capture techniques. In: Bird DM, Bildstein KL (eds) Raptor research and management techniques. Hancock house publisher, Surrey, BlaineGoogle Scholar
  7. Carrete M, Sánchez-Zapata JA, Benítez JR, Lobón M, Donázaret A (2009) Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biol Conserv, doi: 10.1016/j.biocon.2009.07.027
  8. Dürr T (2012) Vogelverluste an WKA in Deutschland und Fledermausverluste weltweit. Summe der Funde seit 1989. Stand Dezember 2012. Daten aus dem Archiv der Staatlichen Vogelschutzwarte im Landesamt für Umwelt, Gesundheit und Verbraucherschutz Brandenburg. Status: December 2012. http://www.lugv.brandenburg.de/cms/media.php/lbm1.a.3310.de/wka_vogel_de.xls, http://www.lugv.brandenburg.de/cms/media.php/lbm1.a.3310.de/wka_voegel_eu.xls
  9. EG-Vogelschutzrichtlinie (2010): Richtlinie 2009/147/EG des Europäischen Parlaments und des Rates vom 30. November 2009 über die Erhaltung der wildlebenden Vogelarten. Anhang 1Google Scholar
  10. Fallen M, Puga JF, Tobias K, Jung C (2006) Hinweise zur Planung von Windenergieanlagen auf Waldstandorten. AG Windenergie, University of KaiserslauternGoogle Scholar
  11. Farfán MA, Vargas JM, Duarte J (2009) What is the impact of wind farms on birds. A case study in southern Spain. Biodivers Conserv 18:3743–3758Google Scholar
  12. Follestad A, Flagstad Ø, Nygård T, Reitan O, Schulze J (2007) Vindkraft og fugl på Smøla 2003–2006. NINA Rapport 248, Trondheim, pp 78Google Scholar
  13. Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES) (2011) Windenergiereport Deutschland 2011. Fraunhofer Institut für Windenergie und Energiesystemtechnik, Bereich Energiewirtschaft & Netzbetrieb, Kassel. http://www.fraunhofer.de/content/dam/zv/de/fors. Assessed 30 June 2013
  14. Garvin JC, Jennelle CS, Drake D, Grodsky SM (2011) Response of raptors to a windfarm. J Appl Ecol 48:199–209Google Scholar
  15. Grünkorn T, Diederichs A, Poszig D, Diederichs B, Nehls G (2009) Wie viele Vögel kollidieren mit Windenergieanlagen? Natur und Landschaft 84:309–314Google Scholar
  16. Hötker H, Thomsen K-M, Köster H (2004) Auswirkungen regenerativer Energiegewinnung auf die biologische Vielfalt am Beispiel der Vögel und der Fledermäuse – Fakten, Wissenslücken, Anforderungen an die Forschung, ornithologische Kriterien zum Ausbau von regenerativen Energiegewinnungsformen. Endbericht für das Bundesamt für Naturschutz, Förd. Nr. Z1.3-684 11-5/03. Michael-Otto-Institut im NABU, Bergenhusen, pp 80Google Scholar
  17. Hull CS, Murir S (2010) Search Areas for Monitoring Bird and Bat Carcasses at Wind Farms Using a Monte-Carlo Model. Aust J Envir Manage 17:77–87 Google Scholar
  18. Illner H (2011) Comments on the report “Wind Energy Developments and Natura 2000”, edited by the European Commission in October 2010. http://www.abu-naturschutz.de/images/H_Illner_15Febr2011_comments_EU-Guidance_wind_turbines_NATURA_2000.pdf
  19. Illner H (2012) Kritik an den EU-Leitlinien „Windenergie-Entwicklung und NATURA 2000“, Herleitung vogelartspezifischer Kollisionsrisiken an Windenergieanlagen und Besprechung neuer Forschungsarbeiten. Eulen-Rundblick Nr. 62:83–100  Google Scholar
  20. Katzner TE, Brandes D, Miller T, Lanzone M, Maisonneuve C, Tremblay JA, Mulvihill R, Merovich GT (2012) Topography drives migratory flight altitude of golden eagles: implications for on-shore wind energy development. J Appl Ecol 49:1178–1186Google Scholar
  21. Kenward RE (1983) A Manual for Wildlife Radio Tagging. Academic Press, LondonGoogle Scholar
  22. Krijgsveld KL, Akershoek K, Schenk F, Dijk F, Dirksen S (2009) Collision risk of birds with modern large wind turbines. Ardea 97:357–366  Google Scholar
  23. Krone O, Scharnweber C (2003) Two white-tailed sea eagles (Haliaeetus albicilla) collide with wind generators in northern Germany. J Raptor Res 37:174–176Google Scholar
  24. Krone O, Grünkorn T, Gippert M, Dürr T (2008) White-tailed Sea Eagles and wind power plants in Germany - preliminary results. In: Hötker H (ed) Birds of Prey and Wind Farms: Analysis of Problems and Possible Solutions. Documentation of an international workshop in Berlin, 21st and 22nd October 2008. http://bergenhusen.nabu.de/imperia/md/images/bergenhusen/bmuwindkraftundgreifwebsite/birds_of_prey_and_windfarms_documentation_2009.pdf, Assessed 30 Jun 2013
  25. Krone O, Berger A, Schulte R (2009) Recording movement and activity pattern of a White-tailed Sea Eagle (Haliaeetus albicilla) by a GPS datalogger. J Ornithol 150:273–280Google Scholar
  26. Landesbund für Vogelschutz in Bayern (LBV) (2010) Literaturstudie über die Auswirkungen von WKA auf die Avifauna. Landesbund für Vogelschutz in Bayern, HilpoltsteinGoogle Scholar
  27. Länder-Arbeitsgemeinschaft der Vogelschutzwarten (LAG-VSW) (2007) Abstandsregelungen für Windenergieanlagen zu bedeutsamen Vogellebensräumen sowie Brutplätzen ausgewählter Vogelarten. Berichte zum Vogelschutz 44:151–153Google Scholar
  28. Langston RWH, Pullan JD (2003) Wind farms and birds: an analysis of the effects of wind farms on birds, and guidance on environmental assessment criteria and site selection issues. Report written by BirdLife International on behalf of the Bern Convention, SandyGoogle Scholar
  29. Madders M, Whitfield DP (2006) Upland raptors and the assessment of wind farm impacts. Ibis 148:43–56Google Scholar
  30. Martin GR (2011) Understanding bird collisions with man-made objects: a sensory ecology approach. Ibis 153:239–254Google Scholar
  31. Martin GR, Katzir G (1999) Visual field in short-toed eagles Circaetus gallicus and the function of binocularity in birds. Brain Behav Evolut 53:55–66Google Scholar
  32. Martin GR, Shaw JM (2010) Bird collision with power lines: Failing to see the way ahead? Biol Conserv 143:2695–2702Google Scholar
  33. Newton I (1998) Population limitation in birds. Academic Press, LondonGoogle Scholar
  34. Orloff S, Flannery A (1992) Wind turbine effects on avian activity, habitat use and mortality in Altamont Pass and Solano County wind resource areas, 1989-1991. Prepared by BioSystems Analysis, Inc. for the California Energy Commission, Sacramento, CaliforniaGoogle Scholar
  35. Pearce-Higgins JW, Leigh S, Langston RHW, Bainbridge IP, Bullman R (2009) The distribution of breeding birds around upland wind farms. J Appl Ecol 46:1323–1331Google Scholar
  36. Smallwood SK, Thelander CG (2004) Developing methods to reduce bird mortality in the Altamont Pass Wind Resource Area. Final Report by BioResource Consultants to the California Energy Commission, Public Interest Energy Research-Environmental Area, Contract No. 500-01-019, pp 363Google Scholar
  37. Smallwood SK, Rugge L, Morrison ML (2009) Influence of Behavior on Bird Mortality in Wind Energy Developments. J Wildlife Manage 73:1082–1098Google Scholar
  38. Smallwood KS, Bell DA, Snyder SA, Didonato JE (2010) Novel Scavenger Removal Trials Increase Wind Turbine-Caused Avian Fatality Estimates. J Wildlife Manage 74: 1089–1097Google Scholar
  39. Swihart R, Slade N (1985a) Testing for independence of observations in animal movements. Ecology 66:1176–1184Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Leibniz Institute for Zoo and Wildlife Research (IZW)BerlinGermany
  2. 2.BioConsult SHHusumGermany

Personalised recommendations