Skip to main content

General Aspects of Effective Field Theories and Few-Body Applications

  • Chapter
  • First Online:
An Advanced Course in Computational Nuclear Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 936))

Abstract

Effective field theory provides a powerful framework to exploit a separation of scales in physical systems. In these lectures, we discuss some general aspects of effective field theories and their application to few-body physics. In particular, we consider an effective field theory for non-relativistic particles with resonant short-range interactions where certain parts of the interaction need to be treated nonperturbatively. As an application, we discuss the so-called pionless effective field theory for low-energy nuclear physics. The extension to include long-range interactions mediated by photon and pion-exchange is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note there are often more than two scales, which complicates the power counting. Here we focus on the simplest case to introduce the general principle.

  2. 2.

    For further examples, see the lectures by Kaplan [4, 5].

  3. 3.

    An alternative way to perform the nonrelativistic reduction is to introduce a “heavy fermion” field [9]. A comparison of this formalism and the Foldy-Wouthuysen transformation can be found in [10].

  4. 4.

    We stress, however, that this really is a model and not a proper EFT describing QCD.

  5. 5.

    Note that Eq. (4.45) is very simple because we have not included a coupling of ψ to the electromagnetic field. If we had done that, the \(\boldsymbol{\nabla }\) would be a covariant derivative, \(\mathbf{D} =\boldsymbol{ \nabla } +\mathrm{ i}e\mathbf{A}\), and Eq. (4.45) would generate, among other terms, the magnetic spin coupling \(\vec{\sigma }\cdot \mathbf{B}\).

  6. 6.

    This is assuming m π  < m σ .

  7. 7.

    Note that in the nonrelativistic case there is no “Feynman propagator.” Particles and particles are decoupled, and the denominator in Eq. (4.64) only has a single pole at p 0 = p 2∕(2m) − iɛ. Flipping the sign of the iɛ term gives the advanced Green’s function.

  8. 8.

    A static (time-independent) potential, as it is more common in quantum mechanics, would be a function only of x and y, and all fields in the interaction term would be evaluated at the same time t.

  9. 9.

    See for example [11, Sect. 2.1.1] for a rigorous discussion of the required transformation properties.

  10. 10.

    We alert the reader that in the literature this is sometimes referred to as the “cutoff of the EFT.” We do not use that language to avoid confusion with an (arbitrary) momentum cutoff introduced to regularize divergent loop integrals (discussed).

  11. 11.

    This separation would be quite clear if we had not set c = 1, which would in fact be more appropriate for a nonrelativistic system. The reason we still do it that it allows us to still energies and momenta in the same units, e.g., in MeV, following the standard convenient in nuclear physics.

  12. 12.

    See [15] for a similar discussion with a focus on applications in ultracold atoms.

  13. 13.

    Note that coupling constants scale with the particle mass as 1∕m in nonrelativistic theories. This can be seen by rescaling all energies as \(q_{0} \rightarrow \tilde{ q_{0}}/m\) and all time coordinates as \(t \rightarrow \tilde{ t}m\), so that dimensionful quantities are measured in units of momentum. Demanding that the action is independent of m, it follows that the coupling constants must scale as 1∕m.

  14. 14.

    If the calculation was carried out in a frame in which the total momentum of the two scattering particles was nonzero, the simple cutoff \(\vert \boldsymbol{q}\vert <\varLambda\) would give a result that does not respect Galilean invariance. To obtain a Galilean-invariant result requires either using a more sophisticated cutoff or else imposing the cutoff \(\vert \boldsymbol{q}\vert <\varLambda\) only after an appropriate shift in the integration variable \(\boldsymbol{q}\).

  15. 15.

    Note that this amplitude is well defined even if a < 0 and there is no two-body bound state. In this case particle lines must be attached to the external dimer propagators to obtain the 3-particle scattering amplitude.

  16. 16.

    For a detailed discussion of the Efimov effect for finite scattering length and applications to ultracold atoms, see [15].

  17. 17.

    As discussed in Sect. 4.5.3 this actually has to be the exchange of two or more pions, as one-pion exchange does not contribute to S-wave scattering at zero energy.

  18. 18.

    The shallow deuteron bound-state pole is within the radius of convergence of the effective range expansion. The deuteron binding momentum is γ t  = 1a t + ⋯ , where the ellipses include corrections from the effective range (and higher-order shape parameters).

  19. 19.

    The minus sign in Eq. (4.134) is a consequence of the convention we use here for the T-matrix.

  20. 20.

    We work in the isospin-symmetric theory here, but in the absence of electromagnetic interactions (discussed in Sect. 4.5.1), the nucleon here should be thought of as a neutron.

  21. 21.

    Unlike what is done in Sect. 4.3, we also read diagrams from left (incoming particles) to right (outgoing particles). Both conventions can be found in the literature.

  22. 22.

    Note that this vector is one part of the more general full off-shell amplitude, which is a 2 × 2 block matrix including the two combinations of dibaryon legs that do not appear in Fig. 4.12.

References

  1. K.G. Wilson, Rev. Mod. Phys. 55, 583 (1983)

    Article  ADS  Google Scholar 

  2. G.P. Lepage, What is renormalization? (1989). Hep-ph/0506330

    Google Scholar 

  3. S. Weinberg, Physica A 96, 327 (1979)

    Article  ADS  Google Scholar 

  4. D.B. Kaplan, Effective field theories (1995). Nucl-th/9506035

    Google Scholar 

  5. D.B. Kaplan, Five lectures on effective field theory (2005). Nucl-th/0510023

    Google Scholar 

  6. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    Article  ADS  Google Scholar 

  7. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

    Article  ADS  Google Scholar 

  8. J.F. Donoghue, E. Golowich, B.R. Holstein, Dynamics of the Standard Model (Cambridge University Press, New York, 1992)

    Book  MATH  Google Scholar 

  9. E. Jenkins, A.V. Manohar, Phys. Lett. B 255, 558 (1991). doi: 10.1016/0370-2693(91)90266-S

    Article  ADS  Google Scholar 

  10. A. Gardestig, K. Kubodera, F. Myhrer, Phys. Rev. C 76, 014005 (2007). doi: 10.1103/PhysRevC.76.014005

    Article  ADS  Google Scholar 

  11. P.R. Hagen, Effective field theory for halo nuclei. Ph.D. thesis, Bonn University (2014)

    Google Scholar 

  12. S.R. Beane, P.F. Bedaque, W.C. Haxton, D.R. Phillips, M.J. Savage, From hadrons to nuclei: crossing the border, in At The Frontier of Particle Physics. Handbook of QCD, vol. 1 (World Scientific, River Edge, 2001), p. 133

    Google Scholar 

  13. P.F. Bedaque, H.W. Hammer, U. van Kolck, Phys. Lett. B 569, 159 (2003)

    Article  ADS  Google Scholar 

  14. E. Braaten, H.W. Hammer, Phys. Rep. 428, 259 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. U. van Kolck, Nucl. Phys. A 645, 273 (1999)

    Article  ADS  Google Scholar 

  16. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534, 329 (1998)

    Article  ADS  Google Scholar 

  17. D.B. Kaplan, Nucl. Phys. B 494, 471 (1997)

    Article  ADS  Google Scholar 

  18. G.V. Skorniakov, K.A. Ter-Martirosian, Sov. Phys. JETP 4, 648 (1957)

    Google Scholar 

  19. G. Danilov, Sov. Phys. JETP 13, 349 (1961)

    Google Scholar 

  20. V.F. Kharchenko, Sov. J. Nucl. Phys. 16, 173 (1973)

    Article  Google Scholar 

  21. P.F. Bedaque, H.W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463 (1999)

    Article  ADS  Google Scholar 

  22. V. Efimov, Phys. Lett. B 33 (8), 563 (1970)

    Article  ADS  Google Scholar 

  23. E. Braaten, D. Kang, L. Platter, Phys. Rev. Lett. 106, 153005 (2011)

    Article  ADS  Google Scholar 

  24. F. Ferlaino, R. Grimm, Physics 3, 9 (2010)

    Article  Google Scholar 

  25. J. Ulmanis, S. Häfner, R. Pires, F. Werner, D.S. Petrov, E.D. Kuhnle, M. Weidemüller, Phys. Rev. A 93, 022707 (2016)

    Article  ADS  Google Scholar 

  26. P.F. Bedaque, H.W. Hammer, U. van Kolck, Nucl. Phys. A 646, 444 (1999)

    Article  ADS  Google Scholar 

  27. S. König, H.W. Grießhammer, H.W. Hammer, J. Phys. G 42, 045101 (2015)

    Article  ADS  Google Scholar 

  28. P.F. Bedaque, H.W. Hammer, U. van Kolck, Nucl. Phys. A 676, 357 (2000)

    Article  ADS  Google Scholar 

  29. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, Boulder, 1995)

    Google Scholar 

  30. S. Weinberg, Phys. Lett. B 251, 288 (1990)

    Article  ADS  Google Scholar 

  31. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  32. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 478, 629 (1996)

    Article  ADS  Google Scholar 

  33. D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B 424, 390 (1998)

    Article  ADS  Google Scholar 

  34. S. Fleming, T. Mehen, I.W. Stewart, Nucl. Phys. A 677, 313 (2000)

    Article  ADS  Google Scholar 

  35. P.F. Bedaque, U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52, 339 (2002)

    Article  ADS  Google Scholar 

  36. B. Long, Y. Mei, Phys. Rev. C 93, 044003 (2016)

    Article  ADS  Google Scholar 

  37. S. Scherer, M.R. Schindler, Lect. Notes Phys. 830, 1 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dick Furnstahl and Bira van Kolck and for various stimulating discussions. Moreover, Sebastian König is grateful to Martin Hoferichter for the insights into Coulomb-gauge quantization presented in Sect. 4.5.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Werner Hammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hammer, HW., König, S. (2017). General Aspects of Effective Field Theories and Few-Body Applications. In: Hjorth-Jensen, M., Lombardo, M., van Kolck, U. (eds) An Advanced Course in Computational Nuclear Physics. Lecture Notes in Physics, vol 936. Springer, Cham. https://doi.org/10.1007/978-3-319-53336-0_4

Download citation

Publish with us

Policies and ethics