Cartilage pp 139-150 | Cite as

Subchondral Bone in Articular Cartilage Regeneration

  • Arndt F. SchillingEmail author


Subchondral sclerosis is one of the hallmark findings of osteoarthritis (OA) and has long been discussed as one of its causes. Indeed, the changes in the subchondral bone often precede cartilage destruction in the development of the disease. Integration of the so far published data including in vitro, in vivo, and mathematical work suggests a critical role for this tissue in nutrition and oxygen supply to the articular cartilage, which may become even more critical in energy demanding processes of healing and regeneration.

Indeed, the success of current predictive diagnostics like specialized MRI techniques and scintigraphy as well as successful regenerative clinical therapies like microfracturing, AMIC, or NAMIC can be better explained if the subchondral bone is taken into the account as supply route for the cartilage.

Consequently, subchondral bone has to be included into the diagnostic and therapeutic concepts aiming to regenerate lost or damaged cartilage for advanced diagnosis and treatment of OA.


Subchondral bone Cartilage Oxygen Nutrition Arthrosis 



AFS wants to thank Dr. Wolfgang Schilling for critical discussion. This work is in part supported by a grant of the German research foundation to AFS (FOR 2407; Schi 857/9-1).


  1. Anders S, Volz M, Frick H, Gellissen J (2013) A randomized, controlled trial comparing autologous matrix-induced chondrogenesis (AMIC(R)) to microfracture: analysis of 1- and 2-year follow-up data of 2 centers. Open Orthop J 7:133–143. doi: 10.2174/1874325001307010133 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bailey AJ, Mansell JP, Sims TJ, Banse X (2004) Biochemical and mechanical properties of subchondral bone in osteoarthritis. Biorheology 41(3-4):349–358PubMedGoogle Scholar
  3. Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205(2):551–558. doi: 10.1148/radiology.205.2.9356644 PubMedCrossRefGoogle Scholar
  4. Benthien JP, Behrens P (2015) Nanofractured autologous matrix induced chondrogenesis (NAMIC(c))--further development of collagen membrane aided chondrogenesis combined with subchondral needling: a technical note. Knee 22(5):411–415. doi: 10.1016/j.knee.2015.06.010 PubMedCrossRefGoogle Scholar
  5. Bergink AP, Uitterlinden AG, Van Leeuwen JP, Hofman A, Verhaar JA, Pols HA (2005) Bone mineral density and vertebral fracture history are associated with incident and progressive radiographic knee osteoarthritis in elderly men and women: the Rotterdam Study. Bone 37(4):446–456. doi: 10.1016/j.bone.2005.05.001 PubMedCrossRefGoogle Scholar
  6. Bergmann G, Bender A, Dymke J, Duda G, Damm P (2016) Standardized loads acting in hip implants. PLoS One 11(5):e0155612. doi: 10.1371/journal.pone.0155612 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Boubriak OA, Watson N, Sivan SS, Stubbens N, Urban JP (2013) Factors regulating viable cell density in the intervertebral disc: blood supply in relation to disc height. J Anat 222(3):341–348. doi: 10.1111/joa.12022 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chen C, Tambe DT, Deng L, Yang L (2013) Biomechanical properties and mechanobiology of the articular chondrocyte. Am J Physiol Cell Physiol 305(12):C1202–C1208. doi: 10.1152/ajpcell.00242.2013 PubMedCrossRefGoogle Scholar
  9. Cox LG, van Donkelaar CC, van Rietbergen B, Emans PJ, Ito K (2012) Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis. Bone 50(5):1152–1161. doi: 10.1016/j.bone.2012.01.024 PubMedCrossRefGoogle Scholar
  10. Davids JR, Diaz K, Leba TB, Adams S, Westberry DE, Bagley AM (2016) Outcomes of cutaneous scar revision during surgical implant removal in children with cerebral palsy. J Bone Joint Surg Am 98(16):1351–1358. doi: 10.2106/jbjs.15.01418 PubMedCrossRefGoogle Scholar
  11. Davies DV (1946) Synovial membrane and synovial fluid of joints. Lancet 2(6432):815–819PubMedCrossRefGoogle Scholar
  12. Davis AJ, Smith TO, Hing CB, Sofat N (2013) Are bisphosphonates effective in the treatment of osteoarthritis pain? A meta-analysis and systematic review. PLoS One 8(9):e72714. doi: 10.1371/journal.pone.0072714 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dieppe P, Cushnaghan J, Young P, Kirwan J (1993) Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis 52(8):557–563PubMedPubMedCentralCrossRefGoogle Scholar
  14. Findlay D, Chehade M, Tsangari H, Neale S, Hay S, Hopwood B, Pannach S, O’Loughlin P, Fazzalari N (2008) Circulating RANKL is inversely related to RANKL mRNA levels in bone in osteoarthritic males. Arthritis Res Ther 10(1):R2. doi: 10.1186/ar2348 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Gelse K, Soder S, Eger W, Diemtar T, Aigner T (2003) Osteophyte development--molecular characterization of differentiation stages. Osteoarthritis Cartilage 11(2):141–148PubMedCrossRefGoogle Scholar
  16. Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ (2015) Osteoarthritis. Lancet 386(9991):376–387. doi: 10.1016/s0140-6736(14)60802-3 PubMedCrossRefGoogle Scholar
  17. Greenwald AS, Haynes DW (1969) A pathway for nutrients from the medullary cavity to the articular cartilage of the human femoral head. J Bone Joint Surg Br 51(4):747–753PubMedGoogle Scholar
  18. Grimshaw MJ, Mason RM (2001) Modulation of bovine articular chondrocyte gene expression in vitro by oxygen tension. Osteoarthritis Cartilage 9(4):357–364. doi: 10.1053/joca.2000.0396 PubMedCrossRefGoogle Scholar
  19. Gudbergsen H, Boesen M, Lohmander LS, Christensen R, Henriksen M, Bartels EM, Christensen P, Rindel L, Aaboe J, Danneskiold-Samsoe B, Riecke BF, Bliddal H (2012) Weight loss is effective for symptomatic relief in obese subjects with knee osteoarthritis independently of joint damage severity assessed by high-field MRI and radiography. Osteoarthritis Cartilage 20(6):495–502. doi: 10.1016/j.joca.2012.02.639 PubMedCrossRefGoogle Scholar
  20. Hartig-Andreasen C, Troelsen A, Thillemann TM, Soballe K (2012) What factors predict failure 4 to 12 years after periacetabular osteotomy? Clin Orthop Relat Res 470(11):2978–2987. doi: 10.1007/s11999-012-2386-4 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J, Rodan GA, Duong LT (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 50(4):1193–1206. doi: 10.1002/art.20124 PubMedCrossRefGoogle Scholar
  22. Haywood L, McWilliams DF, Pearson CI, Gill SE, Ganesan A, Wilson D, Walsh DA (2003) Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum 48(8):2173–2177. doi: 10.1002/art.11094 PubMedCrossRefGoogle Scholar
  23. Hodge JA, McKibbin B (1969) The nutrition of mature and immature cartilage in rabbits. An autoradiographic study. J Bone Joint Surg Br 51(1):140–147PubMedGoogle Scholar
  24. Hoenig E, Winkler T, Mielke G, Paetzold H, Schuettler D, Goepfert C, Machens HG, Morlock MM, Schilling AF (2011) High amplitude direct compressive strain enhances mechanical properties of scaffold-free tissue-engineered cartilage. Tissue Eng Part A 17(9-10):1401–1411. doi: 10.1089/ten.TEA.2010.0395 PubMedCrossRefGoogle Scholar
  25. Hoenig E, Leicht U, Winkler T, Mielke G, Beck K, Peters F, Schilling AF, Morlock MM (2013) Mechanical properties of native and tissue-engineered cartilage depend on carrier permeability: a bioreactor study. Tissue Eng Part A 19(13-14):1534–1542. doi: 10.1089/ten.TEA.2012.0538 PubMedCrossRefGoogle Scholar
  26. Holmdahl DE, Ingelmark BE (1950) The contact between the articular cartilage and the medullary cavities of the bone. Acta Orthop Scand 20(2):156–165PubMedCrossRefGoogle Scholar
  27. Hopwood B, Gronthos S, Kuliwaba JS, Robey PG, Findlay DM, Fazzalari NL (2005) Identification of differentially expressed genes between osteoarthritic and normal trabecular bone from the intertrochanteric region of the proximal femur using cDNA microarray analysis. Bone 36(4):635–644. doi: 10.1016/j.bone.2005.02.003 PubMedCrossRefGoogle Scholar
  28. Hopwood B, Tsykin A, Findlay DM, Fazzalari NL (2007) Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-beta/bone morphogenic protein signalling. Arthritis Res Ther 9(5):R100. doi: 10.1186/ar2301 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Ingelmark BE, Saaf J (1948) Not available. Acta Orthop Scand 17(3-4):303–357PubMedCrossRefGoogle Scholar
  30. Karsdal MA, Leeming DJ, Dam EB, Henriksen K, Alexandersen P, Pastoureau P, Altman RD, Christiansen C (2008) Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthritis Cartilage 16(6):638–646. doi: 10.1016/j.joca.2008.01.014 PubMedCrossRefGoogle Scholar
  31. Kesemenli CC, Memisoglu K, Muezzinoglu US, Akansel G (2013) Treatment for painful bone marrow edema by open wedge tibial osteotomy. Eur J Orthop Surg Traumatol 23(7):825–829. doi: 10.1007/s00590-012-1077-x PubMedCrossRefGoogle Scholar
  32. Lane LB, Bullough PG (1980) Age-related changes in the thickness of the calcified zone and the number of tidemarks in adult human articular cartilage. J Bone Joint Surg Br 62(3):372–375PubMedGoogle Scholar
  33. Lane LB, Villacin A, Bullough PG (1977) The vascularity and remodelling of subchondrial bone and calcified cartilage in adult human femoral and humeral heads. An age- and stress-related phenomenon. J Bone Joint Surg Br 59(3):272–278PubMedGoogle Scholar
  34. Laslett LL, Kingsbury SR, Hensor EM, Bowes MA, Conaghan PG (2014) Effect of bisphosphonate use in patients with symptomatic and radiographic knee osteoarthritis: data from the Osteoarthritis Initiative. Ann Rheum Dis 73(5):824–830. doi: 10.1136/annrheumdis-2012-202989 PubMedCrossRefGoogle Scholar
  35. Lyons TJ, Stoddart RW, McClure SF, McClure J (2005) The tidemark of the chondro-osseous junction of the normal human knee joint. J Mol Histol 36(3):207–215. doi: 10.1007/s10735-005-3283-x PubMedCrossRefGoogle Scholar
  36. Maas O, Joseph GB, Sommer G, Wild D, Kretzschmar M (2015) Association between cartilage degeneration and subchondral bone remodeling in patients with knee osteoarthritis comparing MRI and (99m)Tc-DPD-SPECT/CT. Osteoarthritis Cartilage 23(10):1713–1720. doi: 10.1016/j.joca.2015.05.014 PubMedCrossRefGoogle Scholar
  37. McNitt-Gray JL, Yokoi T, Millward C (1993) Landing strategy adjustments made by female gymnasts in response to drop height and mat composition. J Appl Biomech 9(3):173–190. doi: 10.1123/jab.9.3.173 CrossRefGoogle Scholar
  38. Min BH, Choi WH, Lee YS, Park SR, Choi BH, Kim YJ, Jin LH, Yoon JH (2013) Effect of different bone marrow stimulation techniques (BSTs) on MSCs mobilization. J Orthop Res 31(11):1814–1819. doi: 10.1002/jor.22380 PubMedGoogle Scholar
  39. Owen SG, Francis HW, Roberts MS (1994) Disappearance kinetics of solutes from synovial fluid after intra-articular injection. Br J Clin Pharmacol 38(4):349–355PubMedPubMedCentralCrossRefGoogle Scholar
  40. Philp AM, Davis ET, Jones SW (2016) Developing anti-inflammatory therapeutics for patients with osteoarthritis. Rheumatology (Oxford). doi: 10.1093/rheumatology/kew278 Google Scholar
  41. Pontzer H, Kamilar JM (2009) Great ranging associated with greater reproductive investment in mammals. Proc Natl Acad Sci U S A 106(1):192–196. doi: 10.1073/pnas.0806105106 PubMedCrossRefGoogle Scholar
  42. Pradal J, Maudens P, Gabay C, Seemayer CA, Jordan O, Allemann E (2016) Effect of particle size on the biodistribution of nano- and microparticles following intra-articular injection in mice. Int J Pharm 498(1-2):119–129. doi: 10.1016/j.ijpharm.2015.12.015 PubMedCrossRefGoogle Scholar
  43. Radin EL, Paul IL (1970) Does cartilage compliance reduce skeletal impact loads? The relative force-attenuating properties of articular cartilage, synovial fluid, periarticular soft tissues and bone. Arthritis Rheum 13(2):139–144PubMedCrossRefGoogle Scholar
  44. Radin EL, Paul IL, Rose RM (1972) Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet 1(7749):519–522PubMedCrossRefGoogle Scholar
  45. Reddy AS, Frederick RW (1998) Evaluation of the intraosseous and extraosseous blood supply to the distal femoral condyles. Am J Sports Med 26(3):415–419PubMedGoogle Scholar
  46. Richman AI, Su EY, Ho G Jr (1981) Reciprocal relationship of synovial fluid volume and oxygen tension. Arthritis Rheum 24(5):701–705PubMedCrossRefGoogle Scholar
  47. Saw KY, Anz A, Jee CS, Ng RC, Mohtarrudin N, Ragavanaidu K (2015) High tibial osteotomy in combination with chondrogenesis after stem cell therapy: a histologic report of 8 cases. Arthroscopy 31(10):1909–1920. doi: 10.1016/j.arthro.2015.03.038 PubMedCrossRefGoogle Scholar
  48. Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 75(4):532–553PubMedCrossRefGoogle Scholar
  49. Spahn G, Hofmann GO, von Engelhardt LV, Li M, Neubauer H, Klinger HM (2013) The impact of a high tibial valgus osteotomy and unicondylar medial arthroplasty on the treatment for knee osteoarthritis: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 21(1):96–112. doi: 10.1007/s00167-011-1751-2 PubMedCrossRefGoogle Scholar
  50. Stockwell RA (1971) The interrelationship of cell density and cartilage thickness in mammalian articular cartilage. J Anat 109(Pt 3):411–421PubMedPubMedCentralGoogle Scholar
  51. Truong MD, Chung JY, Kim YJ, Jin LH, Kim BJ, Choi BH, Min BH (2014) Histomorphochemical comparison of microfracture as a first-line and a salvage procedure: is microfracture still a viable option for knee cartilage repair in a salvage situation? J Orthop Res 32(6):802–810. doi: 10.1002/jor.22592 PubMedCrossRefGoogle Scholar
  52. Varenna M, Zucchi F, Failoni S, Becciolini A, Berruto M (2015) Intravenous neridronate in the treatment of acute painful knee osteoarthritis: a randomized controlled study. Rheumatology (Oxford) 54(10):1826–1832. doi: 10.1093/rheumatology/kev123 CrossRefGoogle Scholar
  53. Varricchi G, Granata F, Loffredo S, Genovese A, Marone G (2015) Angiogenesis and lymphangiogenesis in inflammatory skin disorders. J Am Acad Dermatol 73(1):144–153. doi: 10.1016/j.jaad.2015.03.041 PubMedCrossRefGoogle Scholar
  54. Wiegant K, van Roermund PM, Intema F, Cotofana S, Eckstein F, Mastbergen SC, Lafeber FP (2013) Sustained clinical and structural benefit after joint distraction in the treatment of severe knee osteoarthritis. Osteoarthritis Cartilage 21(11):1660–1667. doi: 10.1016/j.joca.2013.08.006 PubMedCrossRefGoogle Scholar
  55. van der Woude JA, Wiegant K, van Heerwaarden RJ, Spruijt S, van Roermund PM, Custers RJ, Mastbergen SC, Lafeber FP (2016) Knee joint distraction compared with high tibial osteotomy: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-016-4131-0 PubMedPubMedCentralGoogle Scholar
  56. Wu SC, Driver VR, Wrobel JS, Armstrong DG (2007) Foot ulcers in the diabetic patient, prevention and treatment. Vasc Health Risk Manag 3(1):65–76PubMedPubMedCentralGoogle Scholar
  57. Zhou S, Cui Z, Urban JP (2004) Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study. Arthritis Rheum 50(12):3915–3924. doi: 10.1002/art.20675 PubMedCrossRefGoogle Scholar
  58. Zhou S, Cui Z, Urban JP (2008) Nutrient gradients in engineered cartilage: metabolic kinetics measurement and mass transfer modeling. Biotechnol Bioeng 101(2):408–421. doi: 10.1002/bit.21887 PubMedCrossRefGoogle Scholar
  59. Ziegler R, Goebel L, Seidel R, Cucchiarini M, Pape D, Madry H (2015) Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part III: analysis of the microstructure of the subchondral bone and correlations with the articular cartilage and meniscus. Knee Surg Sports Traumatol Arthrosc 23(9):2704–2714. doi: 10.1007/s00167-014-3134-y PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Klinik für Unfallchirurgie, Orthopädie und Plastische ChirurgieUniversitätsmedizin GöttingenGöttingenGermany

Personalised recommendations