Skip to main content

Induced Pluripotent Stem Cells and Cartilage Regeneration

  • Chapter
  • First Online:
Cartilage

Abstract

Induced pluripotency has attracted enormous scientific and public attention and has quickly entered all fields of research not only those that had so far lacked an easily accessible cell source for cell therapies and in vitro models. The attractiveness of induced pluripotent stem (iPS) cells for cartilage regeneration roots from their immense expandability and their intrinsic ability to give rise to any adult tissue including stable hyaline cartilage. Thus, iPS cells offer to overcome the extremely limited supply of human articular chondrocytes and the restricted differentiation capacity of mesenchymal stem cells from bone marrow or adipose tissue that differentiate along the endochondral pathway and form mineralized bone upon ectopic implantation. Beyond being a potential alternative cell source for articular chondrocyte implantation, iPS cells are particularly promising for in vitro modeling of genetic diseases and for drug testing. Reprogramming patient-specific cells with a genetic predisposition and engineering disease-specific genetic variations into healthy control iPS cells promises to recapitulate “diseases in a dish” more realistically than immortalized human cell lines and will be an invaluable complementation for animal models. Whether iPS cells will satisfy these tremendous expectations will depend on our ability to upscale iPS cell culture, to derive sufficient amounts of relevant cell types like chondrocytes from iPS cells with acceptable efforts, and to find clinically safe reprogramming techniques for iPS cell-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073. doi:10.1038/nature09534

    Article  PubMed  Google Scholar 

  • Aigner T, Cook JL, Gerwin N, Glasson SS, Laverty S, Little CB, McIlwraith W, Kraus VB (2010) Histopathology atlas of animal model systems – overview of guiding principles. Osteoarthritis Cartilage 18(Suppl 3):S2–S6. doi:http://dx.doi.org/10.1016/j.joca.2010.07.013

  • Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, Morrisey EE (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8(4):376–388. doi:10.1016/j.stem.2011.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco P (2014) “Mesenchymal” stem cells. Annu Rev Cell Dev Biol 30:677–704. doi:10.1146/annurev-cellbio-100913-013132

    Article  CAS  PubMed  Google Scholar 

  • Bianco P, Gehron RP (2000) Marrow stromal stem cells. J Clin Invest 105(12):1663–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boukhechba F, Balaguer T, Bouvet-Gerbettaz S, Michiels JF, Bouler JM, Carle GF, Scimeca JC, Rochet N (2011) Fate of bone marrow stromal cells in a syngenic model of bone formation. Tissue Eng Part A 17(17-18):2267–2278. doi:10.1089/ten.TEA.2010.0461

    Article  CAS  PubMed  Google Scholar 

  • Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64(2):278–294

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084. doi:10.1002/jcb.20886

    Article  CAS  PubMed  Google Scholar 

  • Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK (2010) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38(1):215–224. doi:10.1093/nar/gkp857

    Article  CAS  PubMed  Google Scholar 

  • Dexheimer V, Mueller S, Braatz F, Richter W (2011) Reduced reactivation from dormancy but maintained lineage choice of human mesenchymal stem cells with donor age. PLoS One 6(8):e22980. doi:10.1371/journal.pone.0022980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, Straathof K, Liu E, Durett AG, Grilley B, Liu H, Cruz CR, Savoldo B, Gee AP, Schindler J, Krance RA, Heslop HE, Spencer DM, Rooney CM, Brenner MK (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365(18):1673–1683. doi:10.1056/NEJMoa1106152

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickhut A, Dexheimer V, Martin K, Lauinger R, Heisel C, Richter W (2010) Chondrogenesis of human mesenchymal stem cells by local transforming growth factor-beta delivery in a biphasic resorbable carrier. Tissue Eng Part A 16(2):453–464. doi:10.1089/ten.TEA.2009.0168

    Article  CAS  PubMed  Google Scholar 

  • Diederichs S, Tuan RS (2014) Functional comparison of human-induced pluripotent stem cell-derived mesenchymal cells and bone marrow-derived mesenchymal stromal cells from the same donor. Stem Cells Dev 23(14):1594–1610. doi:10.1089/scd.2013.0477

    Article  PubMed  PubMed Central  Google Scholar 

  • Elves MW, Zervas J (1974) An investigation into the immunogenicity of various components of osteoarticular grafts. Br J Exp Pathol 55(4):344–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109(1):235–242

    Article  CAS  PubMed  Google Scholar 

  • Frobel J, Hemeda H, Lenz M, Abagnale G, Joussen S, Denecke B, Saric T, Zenke M, Wagner W (2014) Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Rep 3(3):414–422. doi:10.1016/j.stemcr.2014.07.003

    Article  CAS  Google Scholar 

  • Giannoni P, Scaglione S, Daga A, Ilengo C, Cilli M, Quarto R (2010) Short-time survival and engraftment of bone marrow stromal cells in an ectopic model of bone regeneration. Tissue Eng Part A 16(2):489–499. doi:10.1089/ten.TEA.2009.0041

    Article  CAS  PubMed  Google Scholar 

  • Giorgetti A, Montserrat N, Aasen T, Gonzalez F, Rodriguez-Piza I, Vassena R, Raya A, Boue S, Barrero MJ, Corbella BA, Torrabadella M, Veiga A, Izpisua Belmonte JC (2009) Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 5(4):353–357. doi:10.1016/j.stem.2009.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63–67. doi:10.1038/nature09805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzzo RM, Gibson J, Xu RH, Lee FY, Drissi H (2013) Efficient differentiation of human iPSC-derived mesenchymal stem cells to chondroprogenitor cells. J Cell Biochem 114(2):480–490. doi:10.1002/jcb.24388

    Article  CAS  PubMed  Google Scholar 

  • Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, Hess C, Zweigerdt R, Gruh I, Meyer J, Wagner S, Maier LS, Han DW, Glage S, Miller K, Fischer P, Scholer HR, Martin U (2009) Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5(4):434–441. doi:10.1016/j.stem.2009.08.021

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi Y, Matsuura K, Shimizu T, Yamato M, Okano T (2013) Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering. J Tissue Eng Regen Med. doi:10.1002/term.1761

    PubMed  Google Scholar 

  • Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341(6146):651–654. doi:10.1126/science.1239278

    Article  CAS  PubMed  Google Scholar 

  • Hunt HE, Sadr K, Deyoung AJ, Gortz S, Bugbee WD (2014) The role of immunologic response in fresh osteochondral allografting of the knee. Am J Sports Med 42(4):886–891. doi:10.1177/0363546513518733

    Article  PubMed  Google Scholar 

  • Hynes K, Menicanin D, Mrozik K, Gronthos S, Bartold PM (2014) Generation of functional mesenchymal stem cells from different induced pluripotent stem cell lines. Stem Cells Dev 23(10):1084–1096. doi:10.1089/scd.2013.0111

    Article  CAS  PubMed  Google Scholar 

  • Ikegawa S (2006) Genetic analysis of skeletal dysplasia: recent advances and perspectives in the post-genome-sequence era. J Hum Genet 51(7):581–586. doi:10.1007/s10038-006-0401-x

    Article  PubMed  Google Scholar 

  • Janicki P, Kasten P, Kleinschmidt K, Luginbuehl R, Richter W (2010) Chondrogenic pre-induction of human mesenchymal stem cells on beta-TCP: enhanced bone quality by endochondral heterotopic bone formation. Acta Biomater 6(8):3292–3301. doi:10.1016/j.actbio.2010.01.037

    Article  CAS  PubMed  Google Scholar 

  • Kang R, Zhou Y, Tan S, Zhou G, Aagaard L, Xie L, Bunger C, Bolund L, Luo Y (2015) Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther 6(1):144. doi:10.1186/s13287-015-0137-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Son MJ, Son MY, Seol B, Kim J, Park J, Kim JH, Kim YH, Park SA, Lee CH, Lee KS, Han YM, Chang JS, Cho YS (2011) Generation of human induced pluripotent stem cells from osteoarthritis patient-derived synovial cells. Arthritis Rheum 63(10):3010–3021. doi:10.1002/art.30488

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, Kan NG, Forcales S, Puri PL, Leone TC, Marine JE, Calkins H, Kelly DP, Judge DP, Chen HS (2013) Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 494(7435):105–110. doi:10.1038/nature11799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimbrel EA, Kouris NA, Yavanian GJ, Chu J, Qin Y, Chan A, Singh RP, McCurdy D, Gordon L, Levinson RD, Lanza R (2014) Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells Dev 23(14):1611–1624. doi:10.1089/scd.2013.0554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama N, Miura M, Nakao K, Kondo E, Fujii T, Taura D, Kanamoto N, Sone M, Yasoda A, Arai H, Bessho K, Nakao K (2013) Human induced pluripotent stem cells differentiated into chondrogenic lineage via generation of mesenchymal progenitor cells. Stem Cells Dev 22(1):102–113. doi:10.1089/scd.2012.0127

    Article  CAS  PubMed  Google Scholar 

  • Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8(1):106–118. doi:10.1016/j.stem.2010.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Kim Y, Yi H, Diecke S, Kim J, Jung H, Rim YA, Jung SM, Kim M, Kim YG, Park SH, Kim HY, Ju JH (2014) Generation of disease-specific induced pluripotent stem cells from patients with rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 16(1):R41. doi:10.1186/ar4470

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy YD, Gortz S, Pulido PA, McCauley JC, Bugbee WD (2013) Do fresh osteochondral allografts successfully treat femoral condyle lesions? Clin Orthop Relat Res 471(1):231–237. doi:10.1007/s11999-012-2556-4

    Article  PubMed  Google Scholar 

  • Li F, Bronson S, Niyibizi C (2010) Derivation of murine induced pluripotent stem cells (iPS) and assessment of their differentiation toward osteogenic lineage. J Cell Biochem 109(4):643–652. doi:10.1002/jcb.22440

    Article  CAS  PubMed  Google Scholar 

  • Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Lam FF, Kang S, Xia JC, Lai WH, Au KW, Chow YY, Siu CW, Lee CN, Tse HF (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121(9):1113–1123

    Article  PubMed  Google Scholar 

  • Liang X, Ding Y, Zhang Y, Tse HF, Lian Q (2014) Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant 23(9):1045–1059. doi:10.3727/096368913X667709

    Article  PubMed  Google Scholar 

  • Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu DT, Chen DT, Ying SY (2008) Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14(10):2115–2124. doi:10.1261/rna.1162708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73. doi:10.1038/nature09798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majors AK, Boehm CA, Nitto H, Midura RJ, Muschler GF (1997) Characterization of human bone marrow stromal cells with respect to osteoblastic differentiation. J Orthop Res 15(4):546–557

    Article  CAS  PubMed  Google Scholar 

  • McLaren D, Gorba T, Marguerie de Rotrou A, Pillai G, Chappell C, Stacey A, Lingard S, Falk A, Smith A, Koch P, Brustle O, Vickers R, Tinsley J, Flanders D, Bello P, Craig S (2013) Automated large-scale culture and medium-throughput chemical screen for modulators of proliferation and viability of human induced pluripotent stem cell-derived neuroepithelial-like stem cells. J Biomol Screen 18(3):258–268. doi:10.1177/1087057112461446

    Article  PubMed  Google Scholar 

  • Medvedev SP, Grigor’eva EV, Shevchenko AI, Malakhova AA, Dementyeva EV, Shilov AA, Pokushalov EA, Zaidman AM, Aleksandrova MA, Plotnikov EY, Sukhikh GT, Zakian SM (2011) Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage. Stem Cells Dev 20(6):1099–1112. doi:10.1089/scd.2010.0249

    Article  CAS  PubMed  Google Scholar 

  • Muller FJ, Schuldt BM, Williams R, Mason D, Altun G, Papapetrou EP, Danner S, Goldmann JE, Herbst A, Schmidt NO, Aldenhoff JB, Laurent LC, Loring JF (2011) A bioinformatic assay for pluripotency in human cells. Nat Methods 8(4):315–317. doi:10.1038/nmeth.1580

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy JM, Dixon K, Beck S, Fabian D, Feldman A, Barry F (2002) Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum 46(3):704–713. doi:10.1002/art.10118

    Article  PubMed  Google Scholar 

  • Muschler GF, Nitto H, Boehm CA, Easley KA (2001) Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19(1):117–125

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, Morizane A, Doi D, Takahashi J, Nishizawa M, Yoshida Y, Toyoda T, Osafune K, Sekiguchi K, Yamanaka S (2014) A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep 4:3594. doi:10.1038/srep03594

    Article  PubMed  PubMed Central  Google Scholar 

  • Narcisi R, Cleary MA, Brama PA, Hoogduijn MJ, Tuysuz N, Ten Berge D, van Osch GJ (2015) Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation. Stem Cell Rep 4(3):459–472. doi:10.1016/j.stemcr.2015.01.017

    Article  CAS  Google Scholar 

  • Niemietz T, Zass G, Hagmann S, Diederichs S, Gotterbarm T, Richter W (2014) Xenogeneic transplantation of articular chondrocytes into full-thickness articular cartilage defects in minipigs: fate of cells and the role of macrophages. Cell Tissue Res 358(3):749–761. doi:10.1007/s00441-014-1982-x

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Ikegawa S, Morioka M, Yamashita A, Saito A, Sawai H, Murotsuki J, Ohashi H, Okamoto T, Nishimura G, Imaizumi K, Tsumaki N (2015) Modeling type II collagenopathy skeletal dysplasia by directed conversion and induced pluripotent stem cells. Hum Mol Genet 24(2):299–313. doi:10.1093/hmg/ddu444

    Article  PubMed  Google Scholar 

  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, Goshima N, Yamanaka S (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31(3):458–466. doi:10.1002/stem.1293

    Article  CAS  PubMed  Google Scholar 

  • Olmer R, Lange A, Selzer S, Kasper C, Haverich A, Martin U, Zweigerdt R (2012) Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng Part C Methods 18(10):772–784. doi:10.1089/ten.TEC.2011.0717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146

    Article  CAS  PubMed  Google Scholar 

  • Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, Aigner T, Richter W (2006) Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 54(10):3254–3266. doi:10.1002/art.22136

    Article  CAS  PubMed  Google Scholar 

  • Qu C, Puttonen KA, Lindeberg H, Ruponen M, Hovatta O, Koistinaho J, Lammi MJ (2013) Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. Int J Biochem Cell Biol 45(8):1802–1812. doi:10.1016/j.biocel.2013.05.029

    Article  CAS  PubMed  Google Scholar 

  • Ranganath SH, Levy O, Inamdar MS, Karp JM (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10(3):244–258. doi:10.1016/j.stem.2012.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitta B, Passarini J, Sareen D, Ornelas L, Sahabian A, Argade S, Krakow D, Cohn DH, Svendsen CN, Rimoin DL (2014) Patient-derived skeletal dysplasia induced pluripotent stem cells display abnormal chondrogenic marker expression and regulation by BMP2 and TGFbeta1. Stem Cells Dev 23(13):1464–1478. doi:10.1089/scd.2014.0014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seebach E, Freischmidt H, Holschbach J, Fellenberg J, Richter W (2014) Mesenchymal stroma cells trigger early attraction of M1 macrophages and endothelial cells into fibrin hydrogels, stimulating long bone healing without long-term engraftment. Acta Biomater 10(11):4730–4741. doi:10.1016/j.actbio.2014.07.017

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Yuasa S, Fukuda K (2011) Derivation of induced pluripotent stem cells from human peripheral circulating T cells. Curr Protoc Stem Cell Biol Chapter 4:Unit4A.3. doi:10.1002/9780470151808.sc04a03s18

  • Shu J, Wu C, Wu Y, Li Z, Shao S, Zhao W, Tang X, Yang H, Shen L, Zuo X, Yang W, Shi Y, Chi X, Zhang H, Gao G, Shu Y, Yuan K, He W, Tang C, Zhao Y, Deng H (2013) Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell 153(5):963–975. doi:10.1016/j.cell.2013.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322(5903):945–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabar V, Studer L (2014) Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet 15(2):82–92. doi:10.1038/nrg3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2013) Induced pluripotent stem cells in medicine and biology. Development 140(12):2457–2461. doi:10.1242/dev.092551

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Takenaka C, Nishishita N, Takada N, Jakt LM, Kawamata S (2010) Effective generation of iPS cells from CD34+ cord blood cells by inhibition of p53. Exp Hematol 38(2):154–162. doi:10.1016/j.exphem.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Jokubaitis V, Wood C, Wang Y, Brouard N, Pera M, Hearn M, Simmons P, Nakayama N (2009) BMP inhibition stimulates WNT-dependent generation of chondrogenic mesoderm from embryonic stem cells. Stem Cell Res 3(2-3):126–141. doi:10.1016/j.scr.2009.07.001

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Lee AS, Volkmer JP, Sahoo D, Nag D, Mosley AR, Inlay MA, Ardehali R, Chavez SL, Pera RR, Behr B, Wu JC, Weissman IL, Drukker M (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29(9):829–834. doi:10.1038/nbt.1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11(2):147–152. doi:10.1016/j.stem.2012.07.014

    Article  CAS  PubMed  Google Scholar 

  • Trounson A, Shepard KA, DeWitt ND (2012) Human disease modeling with induced pluripotent stem cells. Curr Opin Genet Dev 22(5):509–516. doi:10.1016/j.gde.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  • Tsumaki N, Okada M, Yamashita A (2015) iPS cell technologies and cartilage regeneration. Bone 70:48–54. doi:10.1016/j.bone.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  • Turner M, Leslie S, Martin Nicholas G, Peschanski M, Rao M, Taylor Craig J, Trounson A, Turner D, Yamanaka S, Wilmut I (2013) Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell 13(4):382–384. doi:http://dx.doi.org/10.1016/j.stem.2013.08.003

  • Umeda K, Zhao J, Simmons P, Stanley E, Elefanty A, Nakayama N (2012) Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells. Sci Rep 2:455. doi:10.1038/srep00455

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Zeng W, Wan R, Wang J, Zhou Q, Qiu S, Singh SR (2012) Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix. Eur Cell Mater 23:1–12

    Article  CAS  PubMed  Google Scholar 

  • Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458(7239):766–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Bluguermann C, Kyupelyan L, Latour B, Gonzalez S, Shah S, Galic Z, Ge S, Zhu Y, Petrigliano FA, Nsair A, Miriuka SG, Li X, Lyons KM, Crooks GM, McAllister DR, Van Handel B, Adams JS, Evseenko D (2013) Human developmental chondrogenesis as a basis for engineering chondrocytes from pluripotent stem cells. Stem Cell Rep 1(6):575–589. doi:10.1016/j.stemcr.2013.10.012

    Article  CAS  Google Scholar 

  • Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10(6):678–684. doi:10.1016/j.stem.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  • Yamashita A, Morioka M, Kishi H, Kimura T, Yahara Y, Okada M, Fujita K, Sawai H, Ikegawa S, Tsumaki N (2014) Statin treatment rescues FGFR3 skeletal dysplasia phenotypes. Nature 513(7519):507–511. doi:10.1038/nature13775

    Article  CAS  PubMed  Google Scholar 

  • Yamashita A, Morioka M, Yahara Y, Okada M, Kobayashi T, Kuriyama S, Matsuda S, Tsumaki N (2015) Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Rep 4(3):404–418. doi:10.1016/j.stemcr.2015.01.016

    Article  CAS  Google Scholar 

  • Yokoyama K, Ikeya M, Umeda K, Oda H, Nodomi S, Nasu A, Matsumoto Y, Izawa K, Horigome K, Kusaka T, Tanaka T, Saito MK, Yasumi T, Nishikomori R, Ohara O, Nakayama N, Nakahata T, Heike T, Toguchida J (2015) Enhanced chondrogenesis of induced pluripotent stem cells from patients with neonatal-onset multisystem inflammatory disease occurs via the caspase 1-independent cAMP/protein kinase A/CREB pathway. Arthritis Rheumatol 67(1):302–314. doi:10.1002/art.38912

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. doi:10.1126/science.1151526

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Scholer HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann CE, Gierloff M, Hedderich J, Acil Y, Wiltfang J, Terheyden H (2011) Survival of transplanted rat bone marrow-derived osteogenic stem cells in vivo. Tissue Eng Part A 17(7-8):1147–1156. doi:10.1089/ten.TEA.2009.0577

    Article  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228. doi:10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solvig Diederichs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Diederichs, S., Richter, W. (2017). Induced Pluripotent Stem Cells and Cartilage Regeneration. In: Grässel, S., Aszódi, A. (eds) Cartilage. Springer, Cham. https://doi.org/10.1007/978-3-319-53316-2_4

Download citation

Publish with us

Policies and ethics