Cartilage pp 189-206 | Cite as

Animal Models in Cartilage Repair

  • Lars Goebel
  • Liang Gao
  • Henning MadryEmail author


Animal models play an important role to test novel experimental strategies and reconstructive surgical treatments of focal articular cartilage defects. Such animal models need to reflect the different appearances and aetiologies of cartilage defects, e.g. caused by trauma or osteoarthritis. Depth of articular cartilage defects plays an important role. Full-thickness chondral defects do not extend into the subchondral bone, while osteochondral defects penetrate the cement line and extend to the subchondral bone, thereby changing its structural integrity. Mice, rats, rabbits, goat, sheep, minipigs and horses are representing good models, bridging the gap between in vitro studies and clinical experiments in human. Each of them has benefits and limitations. Evaluation of cartilage repair may be performed using a large variety of methods, among which non-destructive evaluations and histological scoring, the latter being considered as the gold standard. As the available reconstructive surgical approaches for articular cartilage repair become increasingly complex, precise animal models to test and to translate new surgical techniques into appropriate clinical treatments are required.


Articular Cartilage Subchondral Bone Cartilage Defect Cartilage Repair Cartilage Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahern BJ, Parvizi J, Boston R, Schaer TP (2009) Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 17(6):705–713. doi: 10.1016/j.joca.2008.11.008 PubMedCrossRefGoogle Scholar
  2. Aigner T, Cook JL, Gerwin N, Glasson SS, Laverty S, Little CB, McIlwraith W, Kraus VB (2010) Histopathology atlas of animal model systems – overview of guiding principles. Osteoarthritis Cartilage 18(Suppl 3):S2–S6. doi: 10.1016/j.joca.2010.07.013 PubMedCrossRefGoogle Scholar
  3. Appleyard RC, Burkhardt D, Ghosh P, Read R, Cake M, Swain MV, Murrell GA (2003) Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage 11(1):65–77PubMedCrossRefGoogle Scholar
  4. Armstrong SJ, Read RA, Price R (1995) Topographical variation within the articular cartilage and subchondral bone of the normal ovine knee joint: a histological approach. Osteoarthritis Cartilage 3(1):25–33PubMedCrossRefGoogle Scholar
  5. Athanasiou KA, Rosenwasser MP, Buckwalter JA, Malinin TI, Mow VC (1991) Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res 9(3):330–340. doi: 10.1002/jor.1100090304 PubMedCrossRefGoogle Scholar
  6. Bert JM (2015) Abandoning microfracture of the knee: has the time come? Arthroscopy 31(3):501–505. doi: 10.1016/j.arthro.2014.12.018 PubMedCrossRefGoogle Scholar
  7. Blaney Davidson EN, van de Loo FA, van den Berg WB, van der Kraan PM (2014) How to build an inducible cartilage-specific transgenic mouse. Arthritis Res Ther 16(3):210. doi: 10.1186/ar4573 PubMedCrossRefGoogle Scholar
  8. Brown WE, Potter HG, Marx RG, Wickiewicz TL, Warren RF (2004) Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res (422):214–223. pii:00003086-200405000-00036Google Scholar
  9. Chen H, Sun J, Hoemann CD, Lascau-Coman V, Ouyang W, McKee MD, Shive MS, Buschmann MD (2009) Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res 27(11):1432–1438. doi: 10.1002/jor.20905 PubMedCrossRefGoogle Scholar
  10. Chen H, Chevrier A, Hoemann CD, Sun J, Ouyang W, Buschmann MD (2011) Characterization of subchondral bone repair for marrow-stimulated chondral defects and its relationship to articular cartilage resurfacing. Am J Sports Med 39(8):1731–1740. doi: 10.1177/0363546511403282 PubMedCrossRefGoogle Scholar
  11. Chevrier A, Kouao AS, Picard G, Hurtig MB, Buschmann MD (2015) Interspecies comparison of subchondral bone properties important for cartilage repair. J Orthop Res 33(1):63–70. doi: 10.1002/jor.22740 PubMedCrossRefGoogle Scholar
  12. Choi B, Kim S, Fan J, Kowalski T, Petrigliano F, Evseenko D, Lee M (2015) Covalently conjugated transforming growth factor-beta1 in modular chitosan hydrogels for the effective treatment of articular cartilage defects. Biomater Sci 3(5):742–752. doi: 10.1039/c4bm00431k PubMedCrossRefGoogle Scholar
  13. Christensen BB, Foldager CB, Olesen ML, Vingtoft L, Rölfing JHD, Ringgaard S, Lind M (2015) Experimental articular cartilage repair in the Göttingen minipig: the influence of multiple defects per knee. J Exp Orthop 2:13. doi: 10.1186/s40634-015-0031-3 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B, De Deyne PG (2011) Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med 39(6):1170–1179. doi: 10.1177/0363546511399382 PubMedCrossRefGoogle Scholar
  15. Cook JL, Kuroki K, Visco D, Pelletier JP, Schulz L, Lafeber FP (2010) The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog. Osteoarthritis Cartilage 18(Suppl 3):S66–S79. doi: 10.1016/j.joca.2010.04.017 PubMedCrossRefGoogle Scholar
  16. Cucchiarini M, Madry H (2014) Overexpression of human IGF-I via direct rAAV-mediated gene transfer improves the early repair of articular cartilage defects in vivo. Gene Ther 21(9):811–819. doi: 10.1038/gt.2014.58 PubMedCrossRefGoogle Scholar
  17. Cucchiarini M, Madry H, Guilak F, Saris DB, Stoddart MJ, Koon Wong M, Roughley P (2014) A vision on the future of articular cartilage repair. Eur Cell Mater 27:12–16PubMedCrossRefGoogle Scholar
  18. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13(4):456–460PubMedCrossRefGoogle Scholar
  19. Custers RJ, Dhert WJ, Saris DB, Verbout AJ, van Rijen MH, Mastbergen SC, Lafeber FP, Creemers LB (2009) Cartilage degeneration in the goat knee caused by treating localized cartilage defects with metal implants. Osteoarthritis Cartilage 23:23Google Scholar
  20. Dhollander AA, De Neve F, Almqvist KF, Verdonk R, Lambrecht S, Elewaut D, Verbruggen G, Verdonk PC (2011) Autologous matrix-induced chondrogenesis combined with platelet-rich plasma gel: technical description and a five pilot patients report. Knee Surg Sports Traumatol Arthrosc 19(4):536–542. doi: 10.1007/s00167-010-1337-4 PubMedCrossRefGoogle Scholar
  21. Drobnic M, Radosavljevic D, Cor A, Brittberg M, Strazar K (2010) Debridement of cartilage lesions before autologous chondrocyte implantation by open or transarthroscopic techniques: a comparative study using post-mortem materials. J Bone Joint Surg Br 92(4):602–608. doi: 10.1302/0301-620X.92B3.22558
  22. Eldracher M, Orth P, Cucchiarini M, Pape D, Madry H (2014) Small subchondral drill holes improve marrow stimulation of articular cartilage defects. Am J Sports Med 42(11):2741–2750. doi: 10.1177/0363546514547029 PubMedCrossRefGoogle Scholar
  23. Frisbie DD, Trotter GW, Powers BE, Rodkey WG, Steadman JR, Howard RD, Park RD, McIlwraith CW (1999) Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg 28(4):242–255PubMedCrossRefGoogle Scholar
  24. Frisbie DD, Oxford JT, Southwood L, Trotter GW, Rodkey WG, Steadman JR, Goodnight JL, McIlwraith CW (2003) Early events in cartilage repair after subchondral bone microfracture. Clin Orthop Relat Res 407:215–227CrossRefGoogle Scholar
  25. Frisbie DD, Cross MW, McIlwraith CW (2006a) A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet Comp Orthop Traumatol 19(3):142–146PubMedGoogle Scholar
  26. Frisbie DD, Morisset S, Ho CP, Rodkey WG, Steadman JR, McIlwraith CW (2006b) Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med 34(11):1824–1831. Epub 2006 Jul 1810Google Scholar
  27. Frisbie DD, McCarthy HE, Archer CW, Barrett MF, McIlwraith CW (2015) Evaluation of articular cartilage progenitor cells for the repair of articular defects in an equine model. J Bone Joint Surg Am 97(6):484–493. doi: 10.2106/JBJS.N.00404
  28. Gerwin N, Bendele AM, Glasson S, Carlson CS (2010) The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat. Osteoarthritis Cartilage 18(Suppl 3):S24–S34. doi: 10.1016/j.joca.2010.05.030 PubMedCrossRefGoogle Scholar
  29. Getgood A, Henson F, Skelton C, Brooks R, Guehring H, Fortier L, Rushton N (2014) Osteochondral tissue engineering using a biphasic collagen/GAG scaffold containing rhFGF18 or BMP-7 in an ovine model. J Exp Orthop 1(13). doi: 10.1186/s40634-014-0013-x
  30. Glasson SS, Chambers MG, Van Den Berg WB, Little CB (2010) The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthritis Cartilage 18(Suppl 3):S17–S23. doi: 10.1016/j.joca.2010.05.025 PubMedCrossRefGoogle Scholar
  31. Goebel L, Orth P, Muller A, Zurakowski D, Bucker A, Cucchiarini M, Pape D, Madry H (2012) Experimental scoring systems for macroscopic articular cartilage repair correlate with the MOCART score assessed by a high-field MRI at 9.4 T – comparative evaluation of five macroscopic scoring systems in a large animal cartilage defect model. Osteoarthritis Cartilage 20(9):1046–1055. doi: 10.1016/j.joca.2012.05.010 PubMedCrossRefGoogle Scholar
  32. Goebel L, Zurakowski D, Muller A, Pape D, Cucchiarini M, Madry H (2014) 2D and 3D MOCART scoring systems assessed by 9.4 T high-field MRI correlate with elementary and complex histological scoring systems in a translational model of osteochondral repair. Osteoarthritis Cartilage 22(10):1386–1395. doi: 10.1016/j.joca.2014.05.027 PubMedCrossRefGoogle Scholar
  33. Goebel L, Muller A, Bucker A, Madry H (2015) High resolution MRI imaging at 9.4 Tesla of the osteochondral unit in a translational model of articular cartilage repair. BMC Musculoskelet Disord 16(1):91. doi: 10.1186/s12891-015-0543-0
  34. Gotterbarm T, Breusch SJ, Schneider U, Jung M (2008) The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab Anim 42(1):71–82. doi: 10.1258/la.2007.06029e PubMedCrossRefGoogle Scholar
  35. Ha CW, Park YB, Chung JY, Park YG (2015) Cartilage repair using composites of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel in a minipig model. Stem Cells Transl Med 4(9):1044–1051. doi: 10.5966/sctm.2014-0264 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Henderson IJ, La Valette DP (2005) Subchondral bone overgrowth in the presence of full-thickness cartilage defects in the knee. Knee 12(6):435–440. doi: 10.1016/j.knee.2005.04.003 PubMedCrossRefGoogle Scholar
  37. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M (2002) Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18(7):730–734PubMedCrossRefGoogle Scholar
  38. Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzman-Morales J (2012) The cartilage-bone interface. J Knee Surg 25(2):85–97PubMedCrossRefGoogle Scholar
  39. Hunziker EB (1999a) Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis Cartilage 7(1):15–28PubMedCrossRefGoogle Scholar
  40. Hunziker EB (1999b) Biologic repair of articular cartilage. Defect models in experimental animals and matrix requirements. Clin Orthop (367 Suppl):S135–S146Google Scholar
  41. Hunziker EB (2000) Articular cartilage repair: problems and perspectives. Biorheology 37(1-2):163–164PubMedGoogle Scholar
  42. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10(6):432–463. doi: 10.1053/joca.2002.0801 PubMedCrossRefGoogle Scholar
  43. Hunziker EB (2009) The elusive path to cartilage regeneration. Adv Mater 21(32-33):3419–3424. doi: 10.1002/adma.200801957 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hunziker EB, Rosenberg LC (1996) Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 78(5):721–733PubMedCrossRefGoogle Scholar
  45. Hunziker EB, Kapfinger E, Geiss J (2007) The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis Cartilage 15(4):403–413. doi: 10.1016/j.joca.2006.09.010 PubMedCrossRefGoogle Scholar
  46. Hunziker EB, Lippuner K, Keel MJ, Shintani N (2015) An educational review of cartilage repair: precepts & practice--myths & misconceptions--progress & prospects. Osteoarthritis Cartilage 23(3):334–350. doi: 10.1016/j.joca.2014.12.011 PubMedCrossRefGoogle Scholar
  47. Jackson DW, Lalor PA, Aberman HM, Simon TM (2001) Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J Bone Joint Surg Am 83-A(1):53–64PubMedCrossRefGoogle Scholar
  48. Jiang CC, Chiang H, Liao CJ, Lin YJ, Kuo TF, Shieh CS, Huang YY, Tuan RS (2007) Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J Orthop Res 25(10):1277–1290. doi: 10.1002/jor.20442 PubMedCrossRefGoogle Scholar
  49. Johnson LL (2001) Arthroscopic abrasion arthroplasty: a review. Clin Orthop (391 Suppl):S306–S317Google Scholar
  50. Kaab MJ, Gwynn IA, Notzli HP (1998) Collagen fibre arrangement in the tibial plateau articular cartilage of man and other mammalian species. J Anat 193(Pt 1):23–34PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kaweblum M, Aguilar MC, Blancas E, Kaweblum J, Lehman WB, Grant AD, Strongwater AM (1994) Histological and radiographic determination of the age of physeal closure of the distal femur, proximal tibia, and proximal fibula of the New Zealand white rabbit. J Orthop Res 12(5):747–749PubMedCrossRefGoogle Scholar
  52. Kiss A, Cucchiarini M, Menger MD, Kohn D, Hannig M, Madry H (2014) Enamel matrix derivative inhibits proteoglycan production and articular cartilage repair, delays the restoration of the subchondral bone and induces changes of the synovial membrane in a lapine osteochondral defect model in vivo. J Tissue Eng Regen Med 8(1):41–49. doi: 10.1002/term.1495 PubMedCrossRefGoogle Scholar
  53. Kon E, Filardo G, Shani J, Altschuler N, Levy A, Zaslav K, Eisman JE, Robinson D (2015) Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model. J Orthop Surg Res 10:81. doi: 10.1186/s13018-015-0211-y
  54. Kraus VB, Huebner JL, DeGroot J, Bendele A (2010) The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the guinea pig. Osteoarthritis Cartilage 18(Suppl 3):S35–S52. doi: 10.1016/j.joca.2010.04.015 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kreuz PC, Erggelet C, Steinwachs MR, Krause SJ, Lahm A, Niemeyer P, Ghanem N, Uhl M, Sudkamp N (2006a) Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 22(11):1180–1186PubMedCrossRefGoogle Scholar
  56. Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, Sudkamp N (2006b) Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 14(11):1119–1125 Epub 2006 Jul 11Google Scholar
  57. Laverty S, Girard CA, Williams JM, Hunziker EB, Pritzker KP (2010) The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rabbit. Osteoarthritis Cartilage 18(Suppl 3):S53–S65. doi: 10.1016/j.joca.2010.05.029 PubMedCrossRefGoogle Scholar
  58. Little CB, Zaki S (2012) What constitutes an “animal model of osteoarthritis”--the need for consensus? Osteoarthritis Cartilage 20(4):261–267. doi: 10.1016/j.joca.2012.01.017 PubMedCrossRefGoogle Scholar
  59. Little CB, Ghosh P, Bellenger CR (1996) Topographic variation in biglycan and decorin synthesis by articular cartilage in the early stages of osteoarthritis: an experimental study in sheep. J Orthop Res 14(3):433–444. doi: 10.1002/jor.1100140314 PubMedCrossRefGoogle Scholar
  60. Little CB, Smith MM, Cake MA, Read RA, Murphy MJ, Barry FP (2010) The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in sheep and goats. Osteoarthritis Cartilage 18(Suppl 3):S80–S92. doi: 10.1016/j.joca.2010.04.016 PubMedCrossRefGoogle Scholar
  61. Madry H (2010) The subchondral bone: a new frontier in articular cartilage repair. Knee Surg Sports Traumatol Arthrosc 18(4):417–418. doi: 10.1007/s00167-010-1071-y PubMedCrossRefGoogle Scholar
  62. Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18(4):419–433. doi: 10.1007/s00167-010-1054-z PubMedCrossRefGoogle Scholar
  63. Madry H, Grun UW, Knutsen G (2011) Cartilage repair and joint preservation: medical and surgical treatment options. Dtsch Arztebl Int 108(40):669–677. doi: 10.3238/arztebl.2011.0669 PubMedPubMedCentralGoogle Scholar
  64. Madry H, Kaul G, Zurakowski D, Vunjak-Novakovic G, Cucchiarini M (2013) Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model. Eur Cell Mater 25:229–247PubMedPubMedCentralCrossRefGoogle Scholar
  65. Madry H, Alini M, Stoddart MJ, Evans C, Miclau T, Steiner S (2014) Barriers and strategies for the clinical translation of advanced orthopaedic tissue engineering protocols. Eur Cell Mater 27:17–21. discussion 21PubMedCrossRefGoogle Scholar
  66. Madry H, Ochi M, Cucchiarini M, Pape D, Seil R (2015) Large animal models in experimental knee sports surgery: focus on clinical translation. J Exp Orthop 2:9. doi: 10.1186/s40634-015-0025-1
  67. Mak J, Leonard C, Foniok T, Rushforth D, Dunn JF, Krawetz R (2015) Evaluating endogenous repair of focal cartilage defects in C57BL/6 and MRL/MpJ mice using 9.4T magnetic resonance imaging: a pilot study. Magn Reson Imaging 33(5):690–694. doi: 10.1016/j.mri.2015.01.001 PubMedCrossRefGoogle Scholar
  68. Matsuoka M, Onodera T, Sasazawa F, Momma D, Baba R, Hontani K, Iwasaki N (2015) An articular cartilage repair model in common C57Bl/6 mice. Tissue Eng Part C Methods 21(8):767–772. doi: 10.1089/ten.TEC.2014.0440 PubMedPubMedCentralCrossRefGoogle Scholar
  69. McIlwraith CW, Frisbie DD, Kawcak CE, Fuller CJ, Hurtig M, Cruz A (2010) The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the horse. Osteoarthritis Cartilage 18(Suppl 3):S93–105. doi: 10.1016/j.joca.2010.05.031 PubMedCrossRefGoogle Scholar
  70. McIlwraith CW, Fortier LA, Frisbie DD, Nixon AJ (2011) Equine models of articular cartilage repair. Cartilage 2(4):317–326. doi: 10.1177/1947603511406531 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mithoefer K, Williams RJ 3rd, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL, Marx RG (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 87(9):1911–1920PubMedGoogle Scholar
  72. Murray RC, Vedi S, Birch HL, Lakhani KH, Goodship AE (2001) Subchondral bone thickness, hardness and remodelling are influenced by short-term exercise in a site-specific manner. J Orthop Res 19(6):1035–1042. doi: 10.1016/S0736-0266(01)00027-4 PubMedCrossRefGoogle Scholar
  73. Niemeyer P, Uhl M, Salzmann GM, Morscheid YP, Sudkamp NP, Madry H (2015) Evaluation and analysis of graft hypertrophy by means of arthroscopy, biochemical MRI and osteochondral biopsies in a patient following autologous chondrocyte implantation for treatment of a full-thickness-cartilage defect of the knee. Arch Orthop Trauma Surg. doi: 10.1007/s00402-015-2194-x PubMedGoogle Scholar
  74. Nixon AJ, Fortier LA, Williams J, Mohammed H (1999) Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites. J Orthop Res 17(4):475–487PubMedCrossRefGoogle Scholar
  75. Orth P, Madry H (2013) A low morbidity surgical approach to the sheep femoral trochlea. BMC Musculoskelet Disord 14:5. doi: 10.1186/1471-2474-14-5 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Orth P, Goebel L, Wolfram U, Ong MF, Graber S, Kohn D, Cucchiarini M, Ignatius A, Pape D, Madry H (2012a) Effect of subchondral drilling on the microarchitecture of subchondral bone: analysis in a large animal model at 6 months. Am J Sports Med 40(4):828–836. doi: 10.1177/0363546511430376 PubMedCrossRefGoogle Scholar
  77. Orth P, Zurakowski D, Wincheringer D, Madry H (2012b) Reliability, reproducibility, and validation of five major histological scoring systems for experimental articular cartilage repair in the rabbit model. Tissue Eng Part C Methods 18(5):329–339. doi: 10.1089/ten.TEC.2011.0462 PubMedCrossRefGoogle Scholar
  78. Orth P, Cucchiarini M, Kohn D, Madry H (2013a) Alterations of the subchondral bone in osteochondral repair--translational data and clinical evidence. Eur Cell Mater 25:299–316. discussion 314-296PubMedCrossRefGoogle Scholar
  79. Orth P, Cucchiarini M, Zurakowski D, Menger MD, Kohn DM, Madry H (2013b) Parathyroid hormone [1-34] improves articular cartilage surface architecture and integration and subchondral bone reconstitution in osteochondral defects in vivo. Osteoarthritis Cartilage 21(4):614–624. doi: 10.1016/j.joca.2013.01.008 PubMedCrossRefGoogle Scholar
  80. Orth P, Meyer HL, Goebel L, Eldracher M, Ong MF, Cucchiarini M, Madry H (2013c) Improved repair of chondral and osteochondral defects in the ovine trochlea compared with the medial condyle. J Orthop Res 31(11):1772–1779. doi: 10.1002/jor.22418 PubMedGoogle Scholar
  81. Orth P, Duffner J, Zurakowski D, Cucchiarini M, Madry H (2015a) Small diameter awls improve articular cartilage repair following microfracture treatment in a translational animal model. Am J Sports Med. doi: 10.1177/0363546514547029
  82. Orth P, Peifer C, Goebel L, Cucchiarini M, Madry H (2015b) Comprehensive analysis of translational osteochondral repair: Focus on the histological assessment. Prog Histochem Cytochem 50(3):19–36. doi: 10.1016/j.proghi.2015.10.001 PubMedCrossRefGoogle Scholar
  83. Osterhoff G, Loffler S, Steinke H, Feja C, Josten C, Hepp P (2011) Comparative anatomical measurements of osseous structures in the ovine and human knee. Knee 18(2):98–103. doi: 10.1016/j.knee.2010.02.001 PubMedCrossRefGoogle Scholar
  84. Pagnotto MR, Wang Z, Karpie JC, Ferretti M, Xiao X, Chu CR (2007) Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Ther 14(10):804–813. Epub 2007 Mar 2008Google Scholar
  85. Pape D, Madry H (2013) The preclinical sheep model of high tibial osteotomy relating basic science to the clinics: standards, techniques and pitfalls. Knee Surg Sports Traumatol Arthrosc 21(1):228–236. doi: 10.1007/s00167-012-2135-y PubMedCrossRefGoogle Scholar
  86. Pineda S, Pollack A, Stevenson S, Goldberg V, Caplan A (1992) A semiquantitative scale for histologic grading of articular cartilage repair. Acta Anat (Basel) 143(4):335–340CrossRefGoogle Scholar
  87. Poole R, Blake S, Buschmann M, Goldring S, Laverty S, Lockwood S, Matyas J, McDougall J, Pritzker K, Rudolphi K, van den Berg W, Yaksh T (2010) Recommendations for the use of preclinical models in the study and treatment of osteoarthritis. Osteoarthritis Cartilage 18(Suppl 3):S10–S16. doi: 10.1016/j.joca.2010.05.027 PubMedCrossRefGoogle Scholar
  88. Pridie KH (1959) A method of resurfacing osteoarthritic knee joints. Proc Br Orthop Assoc J Bone Joint Surg Br 41:618–619Google Scholar
  89. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, van den Berg WB (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 14(1):13–29. doi: 10.1016/j.joca.2005.07.014 PubMedCrossRefGoogle Scholar
  90. Rudert M, Moller HD, Schulze M, Wirth CJ (2000) Tissue engineering for therapy of osteochondral cartilage lesions. Zentralbl Chir 125(6):509–515PubMedGoogle Scholar
  91. Sansone V, de Girolamo L, Pascale W, Melato M, Pascale V (2015) Long-term results of abrasion arthroplasty for full-thickness cartilage lesions of the medial femoral condyle. Arthroscopy 31(3):396–403. doi: 10.1016/j.arthro.2014.10.007 PubMedCrossRefGoogle Scholar
  92. Saris DB, Vanlauwe J, Victor J, Almqvist KF, Verdonk R, Bellemans J, Luyten FP (2009) Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 37(Suppl 1):10S–19S. doi: 10.1177/0363546509350694 PubMedCrossRefGoogle Scholar
  93. Schinhan M, Gruber M, Vavken P, Dorotka R, Samouh L, Chiari C, Gruebl-Barabas R, Nehrer S (2012) Critical-size defect induces unicompartmental osteoarthritis in a stable ovine knee. J Orthop Res 30(2):214–220. doi: 10.1002/jor.21521 PubMedCrossRefGoogle Scholar
  94. Sellers RS, Peluso D, Morris EA (1997) The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg Am 79(10):1452–1463PubMedCrossRefGoogle Scholar
  95. Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 75(4):532–553PubMedCrossRefGoogle Scholar
  96. Simon WH (1971) Scale effects in animal joints. II Thickness and elasticity in the deformability of articular cartilage. Arthritis Rheum 14(4):493–502PubMedCrossRefGoogle Scholar
  97. Smillie IS (1957) Treatment of osteochondritis dissecans. J Bone Joint Surg Br 39(2):248–260PubMedGoogle Scholar
  98. Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop (391 Suppl):S362–S369Google Scholar
  99. Vasiliadis HS, Danielson B, Ljungberg M, McKeon B, Lindahl A, Peterson L (2010) Autologous chondrocyte implantation in cartilage lesions of the knee: long-term evaluation with magnetic resonance imaging and delayed gadolinium-enhanced magnetic resonance imaging technique. Am J Sports Med 38(5):943–949. doi: 10.1177/0363546509358266 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center of Experimental OrthopaedicsSaarland University Medical Center and Saarland UniversityHomburgGermany
  2. 2.Cartilage Net of the Greater RegionHomburgGermany
  3. 3.Department of Orthopaedic SurgerySaarland University Medical Center and Saarland UniversityHomburgGermany

Personalised recommendations