Cartilage pp 1-34 | Cite as

Overview: State of the Art and Future Prospectives for Cartilage Repair

  • Yangzi Jiang
  • Hang Lin
  • Rocky S. TuanEmail author


Articular cartilage degeneration, for example, resulting from joint injury and trauma, has remained a major clinical challenge as cartilage does not have self-healing capability, and osteoarthritis (OA) often ensues. OA affects over 15% of the population, including 65% of those above 65 years of age, and is a major cause of physical disabilities. There is thus a need to develop treatment strategies that can effectively target prevention and/or blockage of early stage disease progress, rather than prosthetic replacement of the joint at the end stage. This chapter provides an overview of the state of the art and future prospectives of cartilage repair strategies. The clinical relevance and tissue pathology of cartilage injury are first introduced, covering the structure and function of cartilage tissue and evaluation and clinical management of cartilage injuries. Next, the principles and strategies of currently practiced cartilage repair are summarized, including palliative approaches (e.g., arthroscopic debridement/lavage), intrinsic repair (e.g., bone marrow stimulation technique—abrasion, drilling, and microfracture), whole tissue transplantation (e.g., osteochondral graft transplantation), and tissue engineering strategy (e.g., autologous chondrocyte implantation/transplantation). An overview of recent advances in cartilage repair strategies is presented, particularly the progress made in stem cell-based therapies and biomaterial scaffold designs. The chapter concludes with a discussion of the remaining scientific and clinical challenges in cartilage repair, specifically highlighting the need of enhancement of tissue integration, maintenance of cell phenotype, prevention of OA progress, and simplification of surgical and rehabilitation procedures.


Articular Cartilage Subchondral Bone Cartilage Defect Cartilage Repair Ultrahigh Molecular Weight Polyethylene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the International Cartilage Repair Society (ICRS) for their kind approval of using illustrations from the ICRS Cartilage Injury Evaluation Package (Fig. 1.4). Research funding is supported by the US Department of Defense (W81XWH-14-2-0003, W81XWH-14-1-0217), NIH (R01 EB019430, P30 AG024827), and the Arthur J. Rooney, Sr. Endowment.


  1. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822. doi: 10.1182/blood-2004-04-1559 PubMedCrossRefGoogle Scholar
  2. Ahmed TA, Hincke MT (2010) Strategies for articular cartilage lesion repair and functional restoration. Tissue Eng Part B Rev 16(3):305–329. doi: 10.1089/ten.TEB.2009.0590 PubMedCrossRefGoogle Scholar
  3. Akagi A, Tajima S, Ishibashi A, Matsubara Y, Takehana M, Kobayashi S, Yamaguchi N (2002) Type XVI collagen is expressed in factor XIIIa+ monocyte-derived dermal dendrocytes and constitutes a potential substrate for factor XIIIa. J Invest Dermatol 118:267–274PubMedCrossRefGoogle Scholar
  4. Akiyama H, Lefebvre V (2011) Unraveling the transcriptional regulatory machinery in chondrogenesis. J Bone Miner Metab 29(4):390–395. doi: 10.1007/s00774-011-0273-9 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alaoui-Ismaili MH, Falb D (2009) Design of second generation therapeutic recombinant bone morphogenetic proteins. Cytokine Growth Factor Rev 20(5–6):501–507. doi: 10.1016/j.cytogfr.2009.10.001
  6. Almqvist KF, Dhollander AA, Verdonk PC, Forsyth R, Verdonk R, Verbruggen G (2009) Treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am J Sports Med 37(10):1920–1929. doi: 10.1177/0363546509335463 PubMedCrossRefGoogle Scholar
  7. Alsalameh S, Amin R, Gemba T, Lotz M (2004) Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 50(5):1522–1532. doi: 10.1002/art.20269 PubMedCrossRefGoogle Scholar
  8. Alvarez LM, Rivera JJ, Stockdale L, Saini S, Lee RT, Griffith LG (2015) Tethering of epidermal growth factor (EGF) to beta tricalcium phosphate (betaTCP) via fusion to a high affinity, multimeric betaTCP-binding peptide: effects on human multipotent stromal cells/connective tissue progenitors. PLoS One 10(6):e0129600. doi: 10.1371/journal.pone.0129600 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Anderer U, Libera J (2002) In vitro engineering of human autogenous cartilage. J Bone Miner Res 17(8):1420–1429. doi: 10.1359/jbmr.2002.17.8.1420 PubMedCrossRefGoogle Scholar
  10. Ando W, Tateishi K, Katakai D, Hart DA, Higuchi C, Nakata K, Hashimoto J, Fujie H, Shino K, Yoshikawa H, Nakamura N (2008) In vitro generation of a scaffold-free tissue-engineered construct (TEC) derived from human synovial mesenchymal stem cells: biological and mechanical properties and further chondrogenic potential. Tissue Eng Part A 14(12):2041–2049. doi: 10.1089/ten.tea.2008.0015
  11. Bailey AM, Kapur S, Katz AJ (2010) Characterization of adipose-derived stem cells: an update. Curr Stem Cell Res Ther 5(2):95–102Google Scholar
  12. Barry F, Boynton RE, Liu B, Murphy JM (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268(2):189–200. doi: 10.1006/excr.2001.5278 PubMedCrossRefGoogle Scholar
  13. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30(1):42–48. doi: 10.1016/S0301-472x(01)00769-X
  14. Bekkers JE, Tsuchida AI, Malda J, Creemers LB, Castelein RJ, Saris DB, Dhert WJ (2010) Quality of scaffold fixation in a human cadaver knee model. Osteoarthritis Cartilage 18(2):266–272. doi: 10.1016/j.joca.2009.09.001 PubMedCrossRefGoogle Scholar
  15. Bhosale AM, Myint P, Roberts S, Menage J, Harrison P, Ashton B, Smith T, McCall I, Richardson JB (2007) Combined autologous chondrocyte implantation and allogenic meniscus transplantation: a biological knee replacement. Knee 14(5):361–368PubMedCrossRefGoogle Scholar
  16. Bian L, Zhai DY, Zhang EC, Mauck RL, Burdick JA (2012) Dynamic compressive loading enhances cartilage matrix synthesis and distribution and suppresses hypertrophy in hMSC-laden hyaluronic acid hydrogels. Tissue Eng Part A 18(7–8):715–724. doi: 10.1089/ten.TEA.2011.0455 PubMedCrossRefGoogle Scholar
  17. Bobick BE, Chen FH, Le AM, Tuan RS (2009) Regulation of the chondrogenic phenotype in culture. Birth Defects Res C Embryo Today 87(4):351–371. doi: 10.1002/bdrc.20167 PubMedCrossRefGoogle Scholar
  18. Bode G, Schmal H, Pestka JM, Ogon P, Sudkamp NP, Niemeyer P (2013) A non-randomized controlled clinical trial on autologous chondrocyte implantation (ACI) in cartilage defects of the medial femoral condyle with or without high tibial osteotomy in patients with varus deformity of less than 5 degrees. Arch Orthop Trauma Surg 133(1):43–49. doi: 10.1007/s00402-012-1637-x PubMedCrossRefGoogle Scholar
  19. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895. doi: 10.1056/NEJM199410063311401 PubMedCrossRefGoogle Scholar
  20. Bryant D, Dill J, Litchfield R, Amendola A, Giffin R, Fowler P, Kirkley A (2007) Effectiveness of bioabsorbable arrows compared with inside-out suturing for vertical, reparable meniscal lesions – a randomized clinical trial. Am J Sport Med 35(6):889–896. doi: 10.1177/0363546506298582
  21. Byers BA, Mauck RL, Chiang IE, Tuan RS (2008) Transient exposure to transforming growth factor beta 3 under serum-free conditions enhances the biomechanical and biochemical maturation of tissue-engineered cartilage. Tissue Eng Part A 14(11):1821–1834. doi: 10.1089/ten.tea.2007.0222 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Callaghan JJ (2003) The adult knee. 1. Lippincott Williams & WilkinsGoogle Scholar
  23. Chahal J, Gross AE, Gross C, Mall N, Dwyer T, Chahal A, Whelan DB, Cole BJ (2013) Outcomes of osteochondral allograft transplantation in the knee. Arthroscopy 29(3):575–588. doi: 10.1016/j.arthro.2012.12.002 PubMedCrossRefGoogle Scholar
  24. Cheng NC, Estes BT, Young TH, Guilak F (2013) Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. Tissue Eng Part A 19(3–4):484–496. doi: 10.1089/ten.TEA.2012.0384 PubMedCrossRefGoogle Scholar
  25. Cleaver O, Melton DA (2003) Endothelial signaling during development. Nat Med 9(6):661–668. doi: 10.1038/nm0603-661nm0603-661 PubMedCrossRefGoogle Scholar
  26. Cole BJ, DeBerardino T, Brewster R, Farr J, Levine DW, Nissen C, Roaf P, Zaslav K (2012) Outcomes of autologous chondrocyte implantation in study of the treatment of articular repair (STAR) patients with osteochondritis dissecans. Am J Sports Med 40(9):2015–2022. doi: 10.1177/0363546512453292 PubMedCrossRefGoogle Scholar
  27. Cox LG, van Rietbergen B, van Donkelaar CC, Ito K (2011) Bone structural changes in osteoarthritis as a result of mechanoregulated bone adaptation: a modeling approach. Osteoarthritis Cartilage 19(6):676–682. doi: 10.1016/j.joca.2011.02.007 PubMedCrossRefGoogle Scholar
  28. Danisovic L, Varga I, Polak S (2012) Growth factors and chondrogenic differentiation of mesenchymal stem cells. Tissue Cell 44(2):69–73. doi: 10.1016/j.tice.2011.11.005 PubMedCrossRefGoogle Scholar
  29. Dattena M, Pilichi S, Rocca S, Mara L, Casu S, Masala G, Manunta L, Manunta A, Passino ES, Pool RR, Cappai P (2009) Sheep embryonic stem-like cells transplanted in full-thickness cartilage defects. J Tissue Eng Regen Med 3(3):175–187. doi: 10.1002/term.151 PubMedCrossRefGoogle Scholar
  30. DeLise AM, Fischer L, Tuan RS (2000) Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 8(5):309–334. doi: 10.1053/joca.1999.0306 PubMedCrossRefGoogle Scholar
  31. Dhollander AA, Verdonk PC, Lambrecht S, Verdonk R, Elewaut D, Verbruggen G, Almqvist KF (2012) Midterm results of the treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am J Sports Med 40(1):75–82. doi: 10.1177/0363546511423013 PubMedCrossRefGoogle Scholar
  32. Diederichs S, Tuan RS (2014) Functional comparison of human-induced pluripotent stem cell-derived mesenchymal cells and bone marrow-derived mesenchymal stromal cells from the same donor. Stem Cells Dev 23(14):1594–1610. doi: 10.1089/scd.2013.0477 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Diekman BO, Estes BT, Guilak F (2010) The effects of BMP6 overexpression on adipose stem cell chondrogenesis: interactions with dexamethasone and exogenous growth factors. J Biomed Mater Res A 93(3):994–1003. doi: 10.1002/jbm.a.32589 PubMedPubMedCentralGoogle Scholar
  34. Estes BT, Wu AW, Guilak F (2006) Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum 54(4):1222–1232. doi: 10.1002/art.21779 PubMedCrossRefGoogle Scholar
  35. Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS (2009) Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30(35):6702–6707. doi: 10.1016/j.biomaterials.2009.08.055 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Felson DT (2004) An update on the pathogenesis and epidemiology of osteoarthritis. Radiol Clin North Am 42(1):1–9. doi: 10.1016/S0033-8389(03)00161-1S0033838903001611 PubMedCrossRefGoogle Scholar
  37. Fernandez FB, Shenoy S, Babu SS, Varma HK, John A (2012) Short-term studies using ceramic scaffolds in lapine model for osteochondral defect amelioration. Biomed Mater 7(3). doi: 10.1088/1748–6041/7/3/035005
  38. Fickert S, Fiedler J, Brenner RE (2004) Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res Ther 6(5):R422–R432. doi: 10.1186/ar1210 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Filardo G, Kon E, Berruto M, Di Martino A, Patella S, Marcheggiani Muccioli GM, Zaffagnini S, Marcacci M (2012) Arthroscopic second generation autologous chondrocytes implantation associated with bone grafting for the treatment of knee osteochondritis dissecans: results at 6 years. Knee 19(5):658–663. doi: 10.1016/j.knee.2011.08.007 PubMedCrossRefGoogle Scholar
  40. Filardo G, Kon E, Roffi A, Di Martino A, Marcacci M (2013a) Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy 29(1):174–186. doi: 10.1016/j.arthro.2012.05.891 PubMedCrossRefGoogle Scholar
  41. Filardo G, Vannini F, Marcacci M, Andriolo L, Ferruzzi A, Giannini S, Kon E (2013b) Matrix-assisted autologous chondrocyte transplantation for cartilage regeneration in osteoarthritic knees: results and failures at midterm follow-up. Am J Sports Med 41(1):95–100. doi: 10.1177/0363546512463675 PubMedCrossRefGoogle Scholar
  42. Fragonas E, Valente M, Pozzi-Mucelli M, Toffanin R, Rizzo R, Silvestri F, Vittur F (2000) Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate. Biomaterials 21(8):795–801PubMedCrossRefGoogle Scholar
  43. Freyria AM, Mallein-Gerin F (2012) Chondrocytes or adult stem cells for cartilage repair: the indisputable role of growth factors. Injury 43(3):259–265. doi: 10.1016/j.injury.2011.05.035 PubMedCrossRefGoogle Scholar
  44. Gehris AL, Oberlender SA, Shepley KJ, Tuan RS, Bennett VD (1996) Fibronectin mRNA alternative splicing is temporally and spatially regulated during chondrogenesis in vivo and in vitro. Dev Dyn 206(2):219–230. doi:10.1002/(sici)1097-0177(199606)206:2<219::aid-aja11>;2-yPubMedCrossRefGoogle Scholar
  45. Gibson MA, Finnis ML, Kumaratilake JS, Cleary EG (1998) Microfibril-associated glycoprotein-2 (MAGP-2) is specifically associated with fibrillin-containing microfibrils but exhibits more restricted patterns of tissue localization and developmental expression than its structural relative MAGP-1. J Histochem Cytochem 46(8):871–886PubMedCrossRefGoogle Scholar
  46. Goldring MB (2006) Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract Res Clin Rheumatol 20(5):1003–1025. doi: 10.1016/j.berh.2006.06.003 PubMedCrossRefGoogle Scholar
  47. Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97(1):33–44. doi: 10.1002/jcb.20652 PubMedCrossRefGoogle Scholar
  48. Grande DA, Singh IJ, Pugh J (1987) Healing of experimentally produced lesions in articular cartilage following chondrocyte transplantation. Anat Rec 218(2):142–148PubMedCrossRefGoogle Scholar
  49. Grande DA, Pitman MI, Peterson L, Menche D, Klein M (1989) The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 7(2):208–218PubMedCrossRefGoogle Scholar
  50. Grogan SP, Chen X, Sovani S, Taniguchi N, Colwell CW Jr, Lotz MK, D’Lima DD (2013) Influence of cartilage extracellular matrix molecules on cell phenotype and neocartilage formation. Tissue Eng Part A. doi: 10.1089/ten.TEA.2012.0618 Google Scholar
  51. Guo X, Park H, Young S, Kretlow JD, van den Beucken JJ, Baggett LS, Tabata Y, Kasper FK, Mikos AG, Jansen JA (2010) Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomater 6(1):39–47. doi: 10.1016/j.actbio.2009.07.041S1742-7061(09)00326-2 PubMedCrossRefGoogle Scholar
  52. Ha CW, Noh MJ, Choi KB, Lee KH (2012) Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 in degenerative arthritis patients. Cytotherapy 14(2):247–256. doi: 10.3109/14653249.2011.629645 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Heinegard D, Saxne T (2011) The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol 7(1):50–56. doi: 10.1038/nrrheum.2010.198 PubMedCrossRefGoogle Scholar
  54. Heng BC, Cao T, Lee EH (2004) Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells 22(7):1152–1167. doi: 10.1634/stemcells.2004–0062
  55. Hennig T, Lorenz H, Thiel A, Goetzke K, Dickhut A, Geiger F, Richter W (2007) Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol 211(3):682–691. doi: 10.1002/jcp.20977 PubMedCrossRefGoogle Scholar
  56. Henrionnet C, Wang Y, Roeder E, Gambier N, Galois L, Mainard D, Bensoussan D, Gillet P, Pinzano A (2012) Effect of dynamic loading on MSCs chondrogenic differentiation in 3-D alginate culture. Biomed Mater Eng 22(4):209–218. doi: 10.3233/BME-2012-0710 PubMedGoogle Scholar
  57. Hildner F, Albrecht C, Gabriel C, Redl H, van Griensven M (2011) State of the art and future perspectives of articular cartilage regeneration: a focus on adipose-derived stem cells and platelet-derived products. J Tissue Eng Regen Med 5(4):E36–E51. doi: 10.1002/Term.386
  58. Hiramatsu K, Sasagawa S, Outani H, Nakagawa K, Yoshikawa H, Tsumaki N (2011) Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors. J Clin Invest 121(2):640–657. doi: 10.1172/Jci44605
  59. Holloway JL, Lowman AM, Palmese GR (2010) Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater 6(12):4716–4724. doi: 10.1016/j.actbio.2010.06.025 PubMedCrossRefGoogle Scholar
  60. Huang AH, Stein A, Tuan RS, Mauck RL (2009) Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Tissue Eng Part A 15(11):3461–3472. doi: 10.1089/ten.TEA.2009.0198 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hwang NS, Varghese S, Lee HJ, Zhang Z, Ye Z, Bae J, Cheng L, Elisseeff J (2008) In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci U S A 105(52):20641–20646. doi: 10.1073/pnas.0809680106 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Im GI, Kim DY, Shin JH, Hyun CW, Cho WH (2001) Repair of cartilage defect in the rabbit with cultured mesenchymal stem cells from bone marrow. J Bone Joint Surg Br 83(2):289–294PubMedCrossRefGoogle Scholar
  63. Irrgang JJ, Snyder-Mackler L, Wainner RS, Fu FH, Harner CD (1998) Development of a patient-reported measure of function of the knee. J Bone Joint Surg Am 80(8):1132–1145PubMedCrossRefGoogle Scholar
  64. Jaiswal PK, Bentley G, Carrington RW, Skinner JA, Briggs TW (2012) The adverse effect of elevated body mass index on outcome after autologous chondrocyte implantation. J Bone Joint Surg Br 94(10):1377–1381. doi: 10.1302/0301-620X.94B10.29388
  65. Jiang Y, Tuan RS (2015) Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat Rev Rheumatol 11(4):206–212. doi: 10.1038/nrrheum.2014.200 PubMedCrossRefGoogle Scholar
  66. Jiang Y, Chen LK, Zhu DC, Zhang GR, Guo C, Qi YY, Ouyang HW (2010) The inductive effect of bone morphogenetic protein-4 on chondral-lineage differentiation and in situ cartilage repair. Tissue Eng Part A 16(5):1621–1632. doi: 10.1089/ten.TEA.2009.0681 PubMedCrossRefGoogle Scholar
  67. Jiang YZ, Zhang SF, Qi YY, Wang LL, Ouyang HW (2011) Cell transplantation for articular cartilage defects: principles of past, present, and future practice. Cell Transplant 20(5):593–607. doi: 10.3727/096368910X532738 PubMedCrossRefGoogle Scholar
  68. Jiang Y, Tong T, Heng B, Ouyang H (2012) Cartilage injuries: role of implantation of human stem/progenitor cells. In: Hayat MA (ed) Stem cells and cancer stem cells, vol 3. Springer Netherlands, pp 327–333. doi: 10.1007/978-94-007-2415-0_33
  69. Jiang Y, Chen L, Zhang S, Tong T, Zhang W, Liu W, Xu G, Tuan RS, Heng BC, Crawford R, Xiao Y, Ouyang HW (2013) Incorporation of bioactive polyvinylpyrrolidone-iodine within bilayered collagen scaffolds enhances the differentiation and subchondral osteogenesis of mesenchymal stem cells. Acta Biomater. doi: 10.1016/j.actbio.2013.05.014
  70. Jiang Y, Cai Y, Zhang W, Yin Z, Hu C, Tong T, Lu P, Zhang S, Neculai D, Tuan RS, Ouyang HW (2016) Human cartilage-derived progenitor cells from committed chondrocytes for efficient cartilage repair and regeneration. Stem Cells Transl Med. doi: 10.5966/sctm.2015-0192 Google Scholar
  71. Johnson DH, Pedowitz RA (2007) Practical orthopaedic sports medicine & arthroscopy [electronic resource]. Wolters Kluwer Health/Lippincott Williams & WilkinsGoogle Scholar
  72. Kasemkijwattana C, Hongeng S, Kesprayura S, Rungsinaporn V, Chaipinyo K, Chansiri K (2011) Autologous bone marrow mesenchymal stem cells implantation for cartilage defects: two cases report. J Med Assoc Thai 94(3):395–400PubMedGoogle Scholar
  73. Kayakabe M, Tsutsumi S, Watanabe H, Kato Y, Takagishi K (2006) Transplantation of autologous rabbit BM-derived mesenchymal stromal cells embedded in hyaluronic acid gel sponge into osteochondral defects of the knee. Cytotherapy 8(4):343–353. doi: 10.1080/14653240600845070
  74. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kim MK, Choi SW, Kim SR, Oh IS, Won MH (2010) Autologous chondrocyte implantation in the knee using fibrin. Knee Surg Sports Traumatol Arthrosc 18(4):528–534. doi: 10.1007/s00167-009-0905-y PubMedCrossRefGoogle Scholar
  76. Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 99(15):9996–10001. doi: 10.1073/pnas.142309999142309999 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68(1):34–45. doi: 10.1016/j.ejpb.2007.02.025 PubMedCrossRefGoogle Scholar
  78. Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 89(10):2105–2112PubMedGoogle Scholar
  79. Koga H, Muneta T, Nagase T, Nimura A, Ju YJ, Mochizuki T, Sekiya I (2008) Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res 333(2):207–215. doi: 10.1007/s00441-008-0633-5 PubMedCrossRefGoogle Scholar
  80. Kopesky PW, Vanderploeg EJ, Sandy JS, Kurz B, Grodzinsky AJ (2010) Self-assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells. Tissue Eng Part A 16(2):465–477. doi: 10.1089/ten.TEA.2009.0158 PubMedCrossRefGoogle Scholar
  81. Kopesky PW, Vanderploeg EJ, Kisiday JD, Frisbie DD, Sandy JD, Grodzinsky AJ (2011) Controlled delivery of transforming growth factor beta1 by self-assembling peptide hydrogels induces chondrogenesis of bone marrow stromal cells and modulates Smad2/3 signaling. Tissue Eng Part A 17(1–2):83–92. doi: 10.1089/ten.TEA.2010.0198 PubMedCrossRefGoogle Scholar
  82. Koria P (2012) Delivery of growth factors for tissue regeneration and wound healing. BioDrugs 26(3):163–175. doi: 10.2165/11631850-000000000-00000 PubMedCrossRefGoogle Scholar
  83. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664PubMedCrossRefGoogle Scholar
  84. Kuo CK, Li WJ, Mauck RL, Tuan RS (2006) Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol 18 (1):64–73. pii:00002281-200601000-00011Google Scholar
  85. Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, Ohgushi H, Wakitani S, Kurosaka M (2007) Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage 15(2):226–231. doi: 10.1016/j.joca.2006.08.008
  86. Lee JC, Lee SY, Min HJ, Han SA, Jang J, Lee S, Seong SC, Lee MC (2012) Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng Part A 18(19–20):2173–2186. doi: 10.1089/ten.tea.2011.0643
  87. Lee JC, Min HJ, Park HJ, Lee S, Seong SC, Lee MC (2013) Synovial membrane-derived mesenchymal stem cells supported by platelet-rich plasma can repair osteochondral defects in a rabbit model. Arthroscopy 29(6):1034–1046. doi: 10.1016/j.arthro.2013.02.026S0749-8063(13)00181-3 PubMedCrossRefGoogle Scholar
  88. Lethbridge-Cejku M, Helmick CG, Popovic JR (2003) Hospitalizations for arthritis and other rheumatic conditions – data from the 1997 National Hospital Discharge Survey. Med Care 41(12):1367–1373. doi: 10.1097/01.Mlr.0000100582.52451.Ac
  89. Li Q, Tang J, Wang R, Bei C, Xin L, Zeng Y, Tang X (2011a) Comparing the chondrogenic potential in vivo of autogeneic mesenchymal stem cells derived from different tissues. Artif Cells Blood Substit Immobil Biotechnol 39(1):31–38. doi: 10.3109/10731191003776769 PubMedCrossRefGoogle Scholar
  90. Li QA, Tang JC, Wang RY, Bei CY, Xin LW, Zeng YJ, Tang XY (2011b) Comparing the chondrogenic potential in vivo of autogeneic mesenchymal stem cells derived from different tissues. Artif Cell Blood Sub 39(1):31–38. doi: 10.3109/10731191003776769
  91. Li K, Guo L, Fan Y, Zhang X (2012) Experimental study on collagen hydrogel scaffolds for cartilage tissue engineering. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 26(11):1356–1361PubMedGoogle Scholar
  92. Lin H, Zhang D, Alexander PG, Yang G, Tan J, Cheng AW, Tuan RS (2013) Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 34(2):331–339. doi: 10.1016/j.biomaterials.2012.09.048 PubMedCrossRefGoogle Scholar
  93. Mabvuure N, Hindocha S, Khan WS (2012) The role of bioreactors in cartilage tissue engineering. Curr Stem Cell Res Ther 7 (4):287–292. pii:CSCRT-EPUB-20120508-008Google Scholar
  94. Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18(4):419–433. doi: 10.1007/s00167-010-1054-z PubMedCrossRefGoogle Scholar
  95. Marlovits S, Striessnig G, Resinger CT, Aldrian SM, Vecsei V, Imhof H, Trattnig S (2004) Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 52(3):310–319. doi: 10.1016/j.ejrad.2004.03.014 PubMedCrossRefGoogle Scholar
  96. Mason C, Dunnill P (2008) A brief definition of regenerative medicine. Regen Med 3(1):1–5. doi: 10.2217/17460751.3.1.1
  97. Mats Brittberg PA, Gambardella R, Hangody L, Haruselmann HJ, Jakob RP, Levine D, Lohmander S, Mandelbaum BR, Peterson L, Staubli H-U (2000) ICRS cartilage injury evaluation package.
  98. Matsumoto T, Cooper GM, Gharaibeh B, Meszaros LB, Li G, Usas A, Fu FH, Huard J (2009) Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum 60(5):1390–1405. doi: 10.1002/art.24443 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mifune Y, Matsumoto T, Takayama K, Ota S, Li H, Meszaros LB, Usas A, Nagamune K, Gharaibeh B, Fu FH, Huard J (2013) The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair. Osteoarthritis Cartilage 21(1):175–185. doi: 10.1016/j.joca.2012.09.018 PubMedCrossRefGoogle Scholar
  100. Miller RE, Grodzinsky AJ, Vanderploeg EJ, Lee C, Ferris DJ, Barrett MF, Kisiday JD, Frisbie DD (2010) Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair. Osteoarthritis Cartilage 18(12):1608–1619. doi: 10.1016/j.joca.2010.09.004 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mitani G, Sato M, Lee JIK, Kaneshiro N, Ishihara M, Ota N, Kokubo M, Sakai H, Kikuchi T, Mochida J (2009) The properties of bioengineered chondrocyte sheets for cartilage regeneration. BMC Biotechnol 9:17. doi:10.1186/1472–6750–9-17 Google Scholar
  102. Mithoefer K, Williams RJ 3rd, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL, Marx RG (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 87(9):1911–1920. doi: 10.2106/JBJS.D.02846 PubMedGoogle Scholar
  103. Moran JM, Pazzano D, Bonassar LJ (2003) Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering. Tissue Eng 9(1):63–70. doi: 10.1089/107632703762687546 PubMedCrossRefGoogle Scholar
  104. Moskalewski S, Hyc A, Osiecka-Iwan A (2002) Immune response by host after allogeneic chondrocyte transplant to the cartilage. Microsc Res Tech 58(1):3–13. doi: 10.1002/jemt.10110 PubMedCrossRefGoogle Scholar
  105. Moskowitz RW (2007) Osteoarthritis: diagnosis and medical/surgical management. Wolters Kluwer Health/Lippincott Williams & WilkinsGoogle Scholar
  106. Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48(12):3464–3474. doi: 10.1002/art.11365 PubMedCrossRefGoogle Scholar
  107. Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38(6):1110–1116. doi: 10.1177/0363546509359067 PubMedCrossRefGoogle Scholar
  108. Noyes FR, Matthews DS, Mooar PA, Grood ES (1983) The symptomatic anterior cruciate-deficient knee. Part II: the results of rehabilitation, activity modification, and counseling on functional disability. J Bone Joint Surg Am 65(2):163–174PubMedCrossRefGoogle Scholar
  109. Oberlender SA, Tuan RS (1994a) Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 120(1):177–187PubMedGoogle Scholar
  110. Oberlender SA, Tuan RS (1994b) Spatiotemporal profile of N-cadherin expression in the developing limb mesenchyme. Cell Adhes Commun 2(6):521–537PubMedCrossRefGoogle Scholar
  111. Ochs BG, Muller-Horvat C, Albrecht D, Schewe B, Weise K, Aicher WK, Rolauffs B (2011) Remodeling of articular cartilage and subchondral bone after bone grafting and matrix-associated autologous chondrocyte implantation for osteochondritis dissecans of the knee. Am J Sports Med 39(4):764–773. doi: 10.1177/0363546510388896 PubMedCrossRefGoogle Scholar
  112. O’Driscoll SW, Keeley FW, Salter RB (1986) The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am 68(7):1017–1035PubMedCrossRefGoogle Scholar
  113. Pan J, Zhou X, Li W, Novotny JE, Doty SB, Wang L (2009) In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res 27(10):1347–1352. doi: 10.1002/jor.20883 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Park J, Gelse K, Frank S, von der Mark K, Aigner T, Schneider H (2006) Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J Gene Med 8(1):112–125. doi: 10.1002/jgm.826 PubMedCrossRefGoogle Scholar
  115. Park JS, Yang HN, Woo DG, Chung HM, Park KH (2009) In vitro and in vivo chondrogenesis of rabbit bone marrow-derived stromal cells in fibrin matrix mixed with growth factor loaded in nanoparticles. Tissue Eng Part A 15(8):2163–2175. doi: 10.1089/ten.tea.2008.0532 PubMedCrossRefGoogle Scholar
  116. Pei M, He F, Boyce BM, Kish VL (2009) Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis Cartilage 17(6):714–722. doi: 10.1016/j.joca.2008.11.017
  117. Pei M, He F, Li J, Tidwell JE, Jones AC, McDonough EB (2013) Repair of large animal partial-thickness cartilage defects through intraarticular injection of matrix-rejuvenated synovium-derived stem cells. Tissue Eng Part A 19(9–10):1144–1154. doi: 10.1089/ten.TEA.2012.0351 PubMedCrossRefGoogle Scholar
  118. Pendleton C, Li Q, Chesler DA, Yuan K, Guerrero-Cazares H, Quinones-Hinojosa A (2013) Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas. PLoS One 8(3):e58198. doi: 10.1371/journal.pone.0058198PONE-D-12-24856 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Pestka JM, Bode G, Salzmann G, Sudkamp NP, Niemeyer P (2012) Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med 40(2):325–331. doi: 10.1177/0363546511425651
  120. Peterson L, Vasiliadis HS, Brittberg M, Lindahl A (2010) Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 38(6):1117–1124. doi: 10.1177/0363546509357915 PubMedCrossRefGoogle Scholar
  121. Pfeiffer E, Vickers SM, Frank E, Grodzinsky AJ, Spector M (2008) The effects of glycosaminoglycan content on the compressive modulus of cartilage engineered in type II collagen scaffolds. Osteoarthritis Cartilage 16(10):1237–1244. doi: 10.1016/j.joca.2008.02.014 PubMedCrossRefGoogle Scholar
  122. Quintin A, Schizas C, Scaletta C, Jaccoud S, Applegate LA, Pioletti DP (2010) Plasticity of fetal cartilaginous cells. Cell Transplant 19(10):1349–1357. doi: 10.3727/096368910X506854 PubMedCrossRefGoogle Scholar
  123. Rackwitz L, Djouad F, Janjanin S, Noth U, Tuan RS (2014) Functional cartilage repair capacity of de-differentiated, chondrocyte- and mesenchymal stem cell-laden hydrogels in vitro. Osteoarthritis Cartilage 22(8):1148–1157. doi: 10.1016/j.joca.2014.05.019 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Revell CM, Athanasiou KA (2009) Success rates and immunologic responses of autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects. Tissue Eng Part B Rev 15(1):1–15. doi: 10.1089/ten.teb.2008.0189 PubMedCrossRefGoogle Scholar
  125. Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, Jay GD, Stewart M, Wang H, Warman ML, Carpten JD (2005) The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest 115(3):622–631. doi: 10.1172/JCI22263 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Riley SL, Dutt S, De La Torre R, Chen AC, Sah RL, Ratcliffe A (2001) Formulation of PEG-based hydrogels affects tissue-engineered cartilage construct characteristics. J Mater Sci Mater Med 12(10–12):983–990PubMedCrossRefGoogle Scholar
  127. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee Injury and Osteoarthritis Outcome Score (KOOS)--development of a self-administered outcome measure. J Orthop Sports Phys Ther 28(2):88–96PubMedCrossRefGoogle Scholar
  128. Saini S, Wick TM (2003) Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development. Biotechnol Prog 19(2):510–521. doi: 10.1021/Bp0256519
  129. Schwarz S, Koerber L, Elsaesser AF, Goldberg-Bockhorn E, Seitz AM, Durselen L, Ignatius A, Walther P, Breiter R, Rotter N (2012) Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A 18(21–22):2195–2209. doi: 10.1089/ten.tea.2011.0705
  130. Sharma B, Williams CG, Khan M, Manson P, Elisseeff JH (2007) In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg 119(1):112–120. doi: 10.1097/01.prs.0000236896.22479.52
  131. Sharma B, Fermanian S, Gibson M, Unterman S, Herzka DA, Cascio B, Coburn J, Hui AY, Marcus N, Gold GE, Elisseeff JH (2013) Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci Transl Med 5(167). doi: 10.1126/scitranslmed.3004838
  132. Shepherd DE, Seedhom BB (1999) The ‘instantaneous’ compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology (Oxford) 38(2):124–132CrossRefGoogle Scholar
  133. Sherman SL, Garrity J, Bauer K, Cook J, Stannard J, Bugbee W (2014) Fresh osteochondral allograft transplantation for the knee: current concepts. J Am Acad Orthop Surg 22(2):121–133. doi: 10.5435/JAAOS-22-02-121 PubMedGoogle Scholar
  134. Shum L, Coleman CM, Hatakeyama Y, Tuan RS (2003) Morphogenesis and dysmorphogenesis of the appendicular skeleton. Birth Defects Res C Embryo Today 69(2):102–122. doi: 10.1002/bdrc.10012 PubMedCrossRefGoogle Scholar
  135. Spiller KL, Maher SA, Lowman AM (2011) Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev 17(4):281–299. doi: 10.1089/ten.teb.2011.0077
  136. Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, Desnoyers J, Restrepo A, Shive MS (2013) Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am 95(18):1640–1650. doi: 10.2106/JBJS.L.01345 PubMedCrossRefGoogle Scholar
  137. Subramanian A, Lin HY (2005) Crosslinked chitosan: its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation. J Biomed Mater Res A 75(3):742–753. doi: 10.1002/jbm.a.30489 PubMedCrossRefGoogle Scholar
  138. Suzuki S, Muneta T, Tsuji K, Ichinose S, Makino H, Umezawa A, Sekiya I (2012) Properties and usefulness of aggregates of synovial mesenchymal stem cells as a source for cartilage regeneration. Arthritis Res Ther 14(3):R136. doi: 10.1186/ar3869ar3869 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Tallheden T, Dennis JE, Lennon DP, Sjogren-Jansson E, Caplan AI, Lindahl A (2003) Phenotypic plasticity of human articular chondrocytes. J Bone Joint Surg Am 85-A(Suppl 2):93–100CrossRefGoogle Scholar
  140. Tayalia P, Mooney DJ (2009) Controlled growth factor delivery for tissue engineering. Adv Mater 21(32–33):3269–3285. doi: 10.1002/adma.200900241 PubMedCrossRefGoogle Scholar
  141. Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49Google Scholar
  142. Teo BJ, Buhary K, Tai BC, Hui JH (2013) Cell-based therapy improves function in adolescents and young adults with patellar osteochondritis dissecans. Clin Orthop Relat Res 471(4):1152–1158. doi: 10.1007/s11999-012-2338-z PubMedCrossRefGoogle Scholar
  143. Tetlow LC, Adlam DJ, Woolley DE (2001) Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum 44(3):585–594. doi:10.1002/1529-0131(200103)44:3<585::AID-ANR107>3.0.CO;2-C PubMedCrossRefGoogle Scholar
  144. Toh WS, Lee EH, Guo XM, Chan JK, Yeow CH, Choo AB, Cao T (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31(27):6968–6980. doi: 10.1016/j.biomaterials.2010.05.064S0142-9612(10)00717-9 PubMedCrossRefGoogle Scholar
  145. Toh WS, Lim TC, Kurisawa M, Spector M (2012) Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials 33(15):3835–3845. doi: 10.1016/j.biomaterials.2012.01.065. pii:S0142-9612(12)00178-0
  146. Towbin H, Staehelin T, Gordon J (1989) Immunoblotting in the clinical laboratory. J Clin Chem Clin Biochem 27(8):495–501PubMedGoogle Scholar
  147. Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5(1):32–45PubMedCrossRefGoogle Scholar
  148. Tuan RS, Lee FY, Konttinen YT, Wilkinson JM, Smith RL (2008) What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles? J Am Acad Orthop Surg 16(Suppl 1):S42–S48PubMedPubMedCentralCrossRefGoogle Scholar
  149. Tuli R, Nandi S, Li WJ, Tuli S, Huang X, Manner PA, Laquerriere P, Noth U, Hall DJ, Tuan RS (2004) Human mesenchymal progenitor cell-based tissue engineering of a single-unit osteochondral construct. Tissue Eng 10(7–8):1169–1179. doi: 10.1089/ten.2004.10.1169 PubMedCrossRefGoogle Scholar
  150. Urech DM, Feige U, Ewert S, Schlosser V, Ottiger M, Polzer K, Schett G, Lichtlen P (2010) Anti-inflammatory and cartilage-protecting effects of an intra-articularly injected anti-TNF{alpha} single-chain Fv antibody (ESBA105) designed for local therapeutic use. Ann Rheum Dis 69(2):443–449. doi: 10.1136/ard.2008.105775
  151. Vijayan S, Bartlett W, Bentley G, Carrington RW, Skinner JA, Pollock RC, Alorjani M, Briggs TW (2012) Autologous chondrocyte implantation for osteochondral lesions in the knee using a bilayer collagen membrane and bone graft: a two- to eight-year follow-up study. J Bone Joint Surg Br 94(4):488–492. doi: 10.1302/0301-620X.94B4.27117
  152. Vinardell T, Sheehy EJ, Buckley CT, Kelly DJ (2012) A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Eng Part A 18(11–12):1161–1170. doi: 10.1089/ten.tea.2011.0544
  153. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 10(3):199–206. doi: 10.1053/joca.2001.0504
  154. Wakitani S, Aoki H, Harada Y, Sonobe M, Morita Y, Mu Y, Tomita N, Nakamura Y, Takeda S, Watanabe TK, Tanigami A (2004a) Embryonic stem cells form articular cartilage, not teratomas, in osteochondral defects of rat joints. Cell Transplant 13(4):331–336PubMedCrossRefGoogle Scholar
  155. Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S (2004b) Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant 13(5):595–600PubMedCrossRefGoogle Scholar
  156. Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H (2007) Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med 1(1):74–79. doi: 10.1002/Term.8
  157. Waller KA, Zhang LX, Elsaid KA, Fleming BC, Warman ML, Jay GD (2013) Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc Natl Acad Sci U S A 110(15):5852–5857. doi: 10.1073/pnas.1219289110 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870. doi: 10.1152/physrev.00031.200283/3/835 PubMedGoogle Scholar
  159. Wezeman FH (1998) Morphological foundations of precartilage development in mesenchyme. Microsc Res Tech 43(2):91–101Google Scholar
  160. Whitmire RE, Wilson DS, Singh A, Levenston ME, Murthy N, Garcia AJ (2012) Self-assembling nanoparticles for intra-articular delivery of anti-inflammatory proteins. Biomaterials 33(30):7665–7675. doi: 10.1016/j.biomaterials.2012.06.101. pii:S0142-9612(12)00766-1
  161. Williams RJ (2007) Cartilage repair strategies. Humana Press, TotowaCrossRefGoogle Scholar
  162. Williams R, Khan IM, Richardson K, Nelson L, McCarthy HE, Analbelsi T, Singhrao SK, Dowthwaite GP, Jones RE, Baird DM, Lewis H, Roberts S, Shaw HM, Dudhia J, Fairclough J, Briggs T, Archer CW (2010) Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One 5(10):e13246. doi: 10.1371/journal.pone.0013246 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Wong M, Siegrist M, Wang X, Hunziker E (2001) Development of mechanically stable alginate/chondrocyte constructs: effects of guluronic acid content and matrix synthesis. J Orthop Res 19(3):493–499. doi: 10.1016/S0736–0266(00)90023-8. pii:S0736-0266(00)90023-8
  164. World Health Organization (2002) The World Health Report 2002: reducing risks, promoting healthy life. World Health OrganizationGoogle Scholar
  165. Xie X, Wang Y, Zhao C, Guo S, Liu S, Jia W, Tuan RS, Zhang C (2012) Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials 33(29):7008–7018. doi: 10.1016/j.biomaterials.2012.06.058S0142-9612(12)00708-9 PubMedCrossRefGoogle Scholar
  166. Yamashita A, Nishikawa S, Rancourt DE (2010) Identification of five developmental processes during chondrogenic differentiation of embryonic stem cells. PLoS One 5(6):e10998. doi: 10.1371/journal.pone.0010998 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Yamashita A, Liu S, Woltjen K, Thomas B, Meng G, Hotta A, Takahashi K, Ellis J, Yamanaka S, Rancourt DE (2013) Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells. Sci Rep 3:1978. doi: 10.1038/srep01978
  168. Yan H, Yu CL (2007) Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthroscopy 23(2):178–187. doi: 10.1016/j.arthro.2006.09.005
  169. Yan LP, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL (2012) Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater 8(1):289–301. doi: 10.1016/j.actbio.2011.09.037. pii:S1742-7061(11)00430-2
  170. Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327(3):449–462. doi: 10.1007/s00441-006-0308-z PubMedCrossRefGoogle Scholar
  171. Zaslav K, Cole B, Brewster R, DeBerardino T, Farr J, Fowler P, Nissen C (2009) A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the Study of the Treatment of Articular Repair (STAR) clinical trial. Am J Sports Med 37(1):42–55. doi: 10.1177/0363546508322897
  172. Zavada SR, Battsengel T, Scott TF (2016) Radical-mediated enzymatic polymerizations. Int J Mol Sci 17(2). doi: 10.3390/ijms17020195
  173. Zelle S, Zantop T, Schanz S, Petersen W (2007) Arthroscopic techniques for the fixation of a three-dimensional scaffold for autologous chondrocyte transplantation: Structural properties in an in vitro model. Arthroscopy 23(10):1073–1078. doi: 10.1016/j.arthro.2007.05.015
  174. Zhang Z (2015) Chondrons and the pericellular matrix of chondrocytes. Tissue Eng Part B Rev 21(3):267–277. doi: 10.1089/ten.TEB.2014.0286 PubMedCrossRefGoogle Scholar
  175. Zhang W, Chen J, Tao J, Jiang Y, Hu C, Huang L, Ji J, Ouyang HW (2013) The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials 34(3):713–723. doi: 10.1016/j.biomaterials.2012.10.027. pii:S0142-9612(12)01148-9
  176. Zhou G, Liu W, Cui L, Wang X, Liu T, Cao Y (2006) Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng 12(11):3209–3221. doi: 10.1089/ten.2006.12.3209 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Cellular and Molecular Engineering, Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations