Generating the Data for Analyzing the Effects of Interprofessional Teams for Improving Triple Aim Outcomes

  • May Nawal LutfiyyaEmail author
  • Teresa Schicker
  • Amy Jarabek
  • Judith Pechacek
  • Barbara Brandt
  • Frank Cerra
Part of the Health Informatics book series (HI)


In this chapter we describe the creation of a data repository, the National Center Data Repository (NCDR) and a national network of performance sites generating that data, the National Innovation Network (NIN) for the National Center for Interprofessional Practice and Education (hereafter the National Center). We describe the raison d’être, characteristics, and ecosystem of the NIN-NCDR. The need for rigorously produced, scientifically sound evidence regarding interprofessional collaborative practice and education (IPE) and whether or not it has the capacity to positively affect the patient experience of care, the health of populations, and the per capita cost of healthcare (Triple Aim) underscored the need for the creation of the NIN-NCDR. Among other things, the NIN-NCDR is an attempt to realize a higher level of analysis of healthcare outcomes as these relate to IPE by creating the capacity to search, aggregate, and cross-reference large data sets focused on IPE related interventions. The endeavor of creating the NIN-NCDR was infused with interprofessional and cross-disciplinary energy and influences from a number of health professions. The principal creators represented medicine, education, nursing, informatics, health economics, program evaluation, public health, and epidemiology. The multiple perspectives and mix of input from many different health professions has proven to be invaluable.


NCDR Data repository IPE Interprofessional practice and education 


  1. Berwick DM, Nolan TW, Whittington J. The triple aim: care, health, and cost. Health Aff. 2008;27:759–69.CrossRefGoogle Scholar
  2. Boyd D, Crawford K. Critical questions for big data. Inform Commun Soc. 2012;15:662–79. doi: 10.1080/1369118X.2012.678878.CrossRefGoogle Scholar
  3. Brandt BF, Lutfiyya MN, King JA, Chioreso C. A scoping review of interprofessional collaborative practice and education using the lens of the triple aim. J Interprof Care. 2014;28:393–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cerra F, Pacala J, Brandt BF, Lutfiyya MN. The application of informatics in delineating the proof of concept for creating knowledge of the value added by interprofessional practice and education. Healthcare. 2015;3:1158–73. doi: 10.3390/healthcare3041158.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cooper P. Data, information, knowledge and wisdom. Anaesth Intensive Care Med. 2014;15:44–5.CrossRefGoogle Scholar
  6. D’Amour D, Oandasan I. Interprofessionality as the field of interprofessional practice and interprofessional education: An emerging concept. J Interprof Care. 2005;19:8–20.CrossRefPubMedGoogle Scholar
  7. Gordon K. What is big data? ITNOW. 2013;55(3):12–3. doi: 10.1093/itnow/bwt037.CrossRefGoogle Scholar
  8. Graves JR, Corcoran S. The study of nursing informatics. J Nurs Sch. 1989;21:227–31.CrossRefGoogle Scholar
  9. Guyer M, Green ED. The National Institute of Health’s Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J Am Med Inform Assoc. 2014;21:957–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hansen MM, Miron-Shatz T, Lau AYS, Paton C. Big data in science and healthcare: a review of recent literature and perspectives contribution of the IMIA Social Media Working Group. Yearb Med Inform. 2014;9:21–6. doi: 10.15265/IY-2014-0004 . Accessed 30 Mar 2016.
  11. Institute of Medicine. Measuring the impact of interprofessional education on collaborative practice and patient outcomes. Washington, DC: The National Academies of Science; 2015.Google Scholar
  12. Lutfiyya MN, Brandt BF, Delany C, Pechacek J, Cerra F. Setting a research agenda for interprofessional education and collaborative practice in the context of US health system reform. J Interprof Care. 2016;30(1):7–14. doi: 10.3109/13561820.2015.1040875.CrossRefPubMedGoogle Scholar
  13. Matney S, Brewster PJ. Philosophical approaches to nursing informatics data-information-knowledge-wisdom framework. Adv Nurs Sci. 2011;34:6–16.CrossRefGoogle Scholar
  14. Merelli I, Pérez-Sánchez H, Gesing S, D’Agostino D. Managing, analyzing, and integrating big data in medical bioinformatics: open problems and future perspectives. Biomed Res Int. 2014;134023. doi: 10.1155/2014/134023 . Accessed 30 Mar 2016.
  15. Pechacek J, Cerra F, Brandt B, Lutfiyya MN, Delaney C. Creating the evidence through comparative effectiveness research for interprofessional education and collaborative practice by developing a national intervention network and a national data repository. Healthcare. 2015;3:146–61.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Porche DJ. Men’s health big data. Am J Mens Health. 2014;8:189.CrossRefPubMedGoogle Scholar
  17. Ross MK, Wei W, Ohno-Machado L. “Big data” and the electronic health record. Yearb Med Inform. 2014;9:97–104. doi: 10.15265/IY-2014-0003 . Accessed 30 Mar 2016.
  18. Weinberg BD, Davis L, Berger PD. Perspectives on big data. J Marketing Analytics. 2013;1:187–201. doi: 10.1057/jma.2013.20.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • May Nawal Lutfiyya
    • 1
    Email author
  • Teresa Schicker
    • 1
  • Amy Jarabek
    • 1
  • Judith Pechacek
    • 2
  • Barbara Brandt
    • 1
  • Frank Cerra
    • 1
  1. 1.National Center for Interprofessional Practice and EducationUniversity of MinnesotaMinneapolisUSA
  2. 2.School of NursingUniversity of MinnesotaMinneapolisUSA

Personalised recommendations