Skip to main content

Human Spermatogenesis and Its Regulation

  • Chapter
  • First Online:
Book cover Male Hypogonadism

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Spermatogenesis in humans is comprised of a series of highly complicated cellular events, necessary to support the production of an upward of 200 million sperm daily from puberty through the entire adulthood of a healthy man. Recent advances in the field using the techniques of cell and molecular biology, genetics, and biochemistry have unraveled many of the mysteries in spermatogenesis. In this Chapter, we highlight some recent advances in the field regarding the biology of human spermatogenesis. We also summarize and discuss recent advances regarding the regulation of spermatogenesis in humans. Due to rapid advances in our understanding of spermatogenesis and the large number of published reports in the literature in the last 2–3 decades, we focus on rapidly developing areas to stimulate the interest of our readers, in particular in areas that offer advances for the treatment of infertility in men.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehmcke J, Schlatt S. A revised model for spermatogonial expansion in man: lessons from non-human primates. Reproduction. 2006;132:673–80.

    Article  CAS  PubMed  Google Scholar 

  2. Schlatt S, Ehmcke J. Regulation of spermatogenesis: an evolutionary biologist’s perspective. Semin Cell Dev Biol. 2014;29:2–16.

    Article  CAS  PubMed  Google Scholar 

  3. Neto FT, Bach PV, Najari BB, Li PS, Goldstein M. Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol. 2016.

    Google Scholar 

  4. Amann RP. The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl. 2008;29:469–87.

    Article  PubMed  Google Scholar 

  5. O’Donnell L, Nicholls PK, O’Bryan MK, McLachlan RI, Stanton PG. Spermiation: the process of sperm release. Spermatogenesis. 2011;1:14–35.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Amann RP, Howards SS. Daily spermatozoal production and epididymal spermatozoal reserves of the human male. J Urol. 1980;124(2):211–5.

    CAS  PubMed  Google Scholar 

  7. Johnson L, Petty CS, Neaves WB. A comparative study of daily sperm production and testicular composition in humans and rats. Biol Reprod. 1980;22(5):1233–43.

    Article  CAS  PubMed  Google Scholar 

  8. Johnson L, Zane RS, Petty CS, Neaves WB. Quantification of the human Sertoli cell population: its distribution, relation to germ cell numbers, and age-related decline. Biol Reprod. 1984;31:785–95.

    Article  CAS  PubMed  Google Scholar 

  9. Zitzmann M. Effects of age on male fertility. Best Pract Res Clin Endocrinol Metab. 2013;27:617–28.

    Article  PubMed  Google Scholar 

  10. O’Donnell L, Robertson KM, Jones ME, Simpson ER. Estrogen and spermatogenesis. Endocr Rev. 2001;22:289–318.

    Article  PubMed  Google Scholar 

  11. McLachlan R, O’Donnell L, Meachem S, Stanton P, de Kretser D, Pratis K, et al. Hormonal regulation of spermatogenesis in primates and man: insights for development of the male hormonal contraceptive. J Androl. 2002;23:149–62.

    CAS  PubMed  Google Scholar 

  12. Carreau S, Hess RA. Oestrogens and spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 2010;365:1517–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharpe RM. Regulation of spermatogenesis. In: The Physiology of Reproduction. Eds. Knobil, E., Neill, J.D. New York, Raven Press. 1994. pp. 1363–434.

    Google Scholar 

  14. O’Donnell L, Meachem SJ, Stanton PG, McLachlan RI. Endocrine regulation of spermatogenesis. In: Neill JD, editor. Physiology of Reproduction. 3rd ed. Amsterdam: Elsevier; 2006. p. 1017–69.

    Google Scholar 

  15. O’Shaughnessy PJ. Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol. 2014;29:55–65.

    Article  PubMed  CAS  Google Scholar 

  16. Kilchevsky A, Honig S. Male factor infertility in 2011: semen quality, sperm selection and hematospermia. Nat Rev Urol. 2012;9:68–70.

    Article  PubMed  Google Scholar 

  17. Sharpe RM. Environmental/lifestyle effects on spermatogenesis. Phil Trans R Soc Lond B Biol Sci. 2010;365:1697–712.

    Article  CAS  Google Scholar 

  18. Cheng CY, Wong EWP, Lie PPY, Li MWM, Su L, Siu ER, et al. Environmental toxicants and male reproductive function. Spermatogenesis. 2011;1:2–13.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wei Y, Schatten H, Sun QY. Environmental epigenetic inheritance through gametes and implications for human reproduction. Hum Reprod Update. 2015;21(2):194–208.

    Article  PubMed  Google Scholar 

  20. Campion S, Catlin N, Heger N, McConndell EV, Pacheco SE, Saffarini C, et al. Male reprotoxicty and endocrine disruption. EXS. 2012;101:315–60.

    PubMed  PubMed Central  Google Scholar 

  21. Wan HT, Mruk DD, Wong CKC, Cheng CY. Targeting testis-specific proteins to inhibit spermatogenesis - lesson from endocrine disrupting chemicals. Expert Opin Ther Targets. 2013;17:839–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Geoffroy-Siraudin C, Loundou Ad, Romain F, Achard V, Courbiere B, Perrard MH, et al. Decline of semen quality among 10932 males consulting for couple infertility over a 20-year period in Marseille. France. Asian J Androl. 2012;14:584–90.

    Article  PubMed  Google Scholar 

  23. Jorgensen N, Vierula M, Jacobsen R, Pukkala E, Perheentupa A, Virtanen HE, et al. Recent adverse trends in semen quality and testis cancer incidence among Finnish men. Int J Androl. 2011;34:e37–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Virtanen HE, Sadov S, Vierula M, Toppari J. Finland is following the trend-sperm quality in Finnish men. Asian J Androl. 2013;15(2):162–4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Handelsman DJ, Cooper TG. Falling sperm counts and global estrogenic pollution: what have we learned over 20 years? Asian J Androl. 2013;15(2):159–61.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Foresta C, Moro E, Ferlin A. Y chromosome microdeletions and alterations of spermatogenesis. Endocr Rev. 2010;22:226–39.

    Google Scholar 

  27. Greenberg SH, Lipshultz LI, Wein AJ. Experience with 425 subfertile male patients. J Urol. 1978;119:507–10.

    CAS  PubMed  Google Scholar 

  28. Krausz C, Escamilla AR, Chianese C. Genetics of male infertility: from research to clinic. Reproduction. 2015;150(5):R159–74.

    Article  CAS  PubMed  Google Scholar 

  29. Jamsai D, O’Bryan MK. Mouse models in male fertility research. Asian J Androl. 2011;13:139–51.

    Article  PubMed  Google Scholar 

  30. Carrell DT, Aston KI, Oliva R, Emery BR, De Jonge CJ. The “omics” of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res. 2016;363(1):295–312.

    Article  CAS  PubMed  Google Scholar 

  31. Com E, Melaine N, Chalmel F, Pineau C. Proteomics and integrative genomics for unraveling the mysteries of spermatogenesis: the strategies of a team. J proteomics. 2014;107:128–43.

    Article  CAS  PubMed  Google Scholar 

  32. Winters SJ, Troen P. Testosterone and estradiol are co-secreted episodially by the human testis. J Clin Invest. 1986;78:870–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Muller J, Skakkebaek NE. Quantification of germ cells and seminiferous tubules by stereological examination of testicles of 50 boys who suffered from sudden death. Int J Androl. 1983;6:143–56.

    Article  CAS  PubMed  Google Scholar 

  34. Clermont Y. The cycle of the seminiferous epithelium in man. Am J Anat. 1963;112:35–51.

    Article  CAS  PubMed  Google Scholar 

  35. Dym M. Basement membrane regulation of Sertoli cells. Endocr Rev. 1994;15:102–15.

    CAS  PubMed  Google Scholar 

  36. Siu MKY, Cheng CY. Dynamic cross-talk between cells and the extracellular matrix in the testis. BioEssays. 2004;26:978–92.

    Article  CAS  PubMed  Google Scholar 

  37. Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev. 2004;25:747–806.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng CY, Mruk DD. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol Rev. 2002;82:825–74.

    Article  CAS  PubMed  Google Scholar 

  39. Weber JE, Russell LD, Wong V, Peterson RN. Three dimensional reconstruction of a rat stage V Sertoli cell: II. Morphometry of Sertoli-Sertoli and Sertoli-germ cell relationships. Am J Anat. 1983;167:163–79.

    Article  CAS  PubMed  Google Scholar 

  40. Sharpe RM, McKinnell C, Kivlin C, Fisher JS. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003;125:769–84.

    Article  CAS  PubMed  Google Scholar 

  41. Auharek SA, Avelar GF, Lara NLM, Sharpe RM, Franca LR. Sertoli cell numbers and spermatogenic efficiency are increased in inducible nitric oxide synthase (iNOS) mutant-mice. Int J Androl. 2011;34:e621–9.

    Article  CAS  PubMed  Google Scholar 

  42. Berndtson WE, Thompson TL. Changing relationships between testis size, Sertoli cell number and spermatogenesis in Sprague-Dawley rats. J Androl. 1990;11:429–35.

    CAS  PubMed  Google Scholar 

  43. Wing TY, Christensen AK. Morphometric studies on rat seminiferous tubules. Am J Anat. 1982;165:13–25.

    Article  CAS  PubMed  Google Scholar 

  44. Wang ZX, Wreford NG, de Kretser DM. Determination of Sertoli cell numbers in the developing rat testis by sterological methods. Int J Androl. 1989;12:58–64.

    Article  CAS  PubMed  Google Scholar 

  45. Johnson L, Petty CS, Neaves WB. A comparative study of daily sperm production and testicular composition in humans and rats. Biol Reprod. 1980;22:1233–43.

    Article  CAS  PubMed  Google Scholar 

  46. Amann RP, Howards SS. Daily spermatozoal production and epididymal spermatozoal reserves of the human male. J Urol. 1980;124:211–5.

    CAS  PubMed  Google Scholar 

  47. Turner TT, Jones CC, Howards SS, Ewing LL, Zegeye B, Gunsalus GL. On the androgen microenvironment of maturing spermatozoa. Endocrinology. 1984;115:1925–32.

    Article  CAS  PubMed  Google Scholar 

  48. Jarow JP, Chen H, Rosner W, Trentacoste S, Zirkin BR. Assessment of the androgen environment within the human testis: Minimally invasive method to obtain intratesticular fluid. J Androl. 2001;22:640–5.

    CAS  PubMed  Google Scholar 

  49. Roth MY, Page ST, Lin K, Anawalt BD, Matsumoto AM, Synder CN, et al. Dose-dependent increase in intratesticular testosterone by very low-dose human chorionic gonadotropin in normal men with experimental gonadotropin deficiency. J Clin Endocrinol Metab. 2010;95:3806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takahashi J, Higashi Y, Lanasa JA, Winters SJ, Oshima H, Troen P. Studies of the human testis. XVII. Gonadotropin regulation of intratesticular testosterone and estradiol in infertile men. J Clin Endocrinol Metab. 1982;55:1073–80.

    Article  CAS  PubMed  Google Scholar 

  51. Cheng CY, Mruk DD. The blood-testis barrier and its implications for male contraception. Pharmacol Rev. 2012;64:16–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pelletier RM. The blood-testis barrier: the junctional permeability, the proteins and the lipids. Prog Histochem Cytochem. 2011;46:49–127.

    Article  PubMed  Google Scholar 

  53. Cheng YH, Wong EWP, Cheng CY. Cancer/testis (CT) antigens, carcinogenesis and spermatogenesis. Spermatogenesis. 2011;1:209–20.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yule TD, Montoya GD, Russell LD, Williams TM, Tung KSK. Autoantigenic germ cells exist outside the blood testis barrier. J Immunol. 1988;141:1161–7.

    CAS  PubMed  Google Scholar 

  55. Meinhardt A, Hedger MP. Immunological, paracrine and endocrine aspects of testicular immune privilege. Mol Cell Endocrinol. 2011;335:60–8.

    Article  CAS  PubMed  Google Scholar 

  56. Chui K, Trivedi A, Cheng CY, Cherbavaz DB, Dazin PF, Huynh ALT, et al. Characterization and functionality of proliferative human Sertoli cells. Cell Transplant. 2011;20:619–35.

    Article  PubMed  Google Scholar 

  57. Xiao X, Mruk DD, Tang EI, Wong CKC, Lee WM, John CM, et al. Environmental toxicants perturb human Serotli cell adhesive function via changes in F-actin organization medicated by actin regulatory proteins. Hum Reprod. 2014;29:1279–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. O’Donnell L, Stanton P, Bartles J, Robertson D. Sertoli cell ectoplasmic specializations in the seminiferous epithelium of the testosterone-suppressed adult rat. Biol Reprod. 2000;63:99–108.

    Article  PubMed  Google Scholar 

  59. Meng J, Holdcraft RW, Shima JE, Griswold MD, Braun RE. Androgens regulate the permeability of the blood-testis barrier. Proc Natl Acad Sci USA. 2005;102:16696–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chung NPY, Cheng CY. Is cadmium chloride-induced inter-Sertoli tight junction permeability barrier disruption a suitable in vitro model to study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology. 2001;142:1878–88.

    CAS  PubMed  Google Scholar 

  61. Xiao X, Mruk DD, Lee WM, Cheng CY. c-Yes regulates cell adhesion at the blood-testis barrier and the apical ectoplasmic specialization in the seminiferous epithelium of rat testes. Int J Biochem Cell Biol. 2011;43:651–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ilani N, Armanious N, Lue YH, Swerdloff RS, Baravarian S, Adler A, et al. Integrity of the blood-testis barrier in healthy men after suppression of spermatogenesis with testosterone and levonorgestrel. Hum Reprod. 2012;27(12):3403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McCabe MJ, Tarulli GA, Laven-Law G, Matthiesson KL, Meachem SJ, McLachlan RI, et al. Gonadotropin suppression in men leads to a reduction in claudin-11 at the Sertoli cell tight junction. Hum Reprod. 2016;31(4):875–86.

    Article  CAS  PubMed  Google Scholar 

  64. Robillard KR, Hoque MT, Bendayan R. Expression of ATP-binding cassette membrane transporters in rodent and human Sertoli cells: relevance to the permeability of antiretroviral therapy at the blood-testis barrier. J Pharmacol Exp Ther. 2012;340:96–108.

    Article  CAS  PubMed  Google Scholar 

  65. Hoque MT, Kis O, De Rosa MF, Bendayan R. Raltegravir permeability across blood-tissue barriers and the potential role of drug efflux transporters. Antimicrob Agents Chemother. 2015;59(5):2572–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jesus TT, Oliveira PF, Silva J, Barros A, Ferreira R, Sousa M, et al. Mammalian target of rapamycin controls glucose consumption and redox balance in human Sertoli cells. Fertil Steril. 2016;105(3):825–33 e3.

    Google Scholar 

  67. Bardin CW, Gunsalus GL, Cheng CY. The cell biology of the Sertoli cell. In: Desjardins C, Ewing L, editors. Cell and molecular biology of the testis. New York: Oxford University Press; 1993. p. 189–219.

    Google Scholar 

  68. Cheng CY, Mruk DD. Biochemistry of Sertoli cell/germ cell junctions, germ cell transport, and spermiation in the seminiferous epithelium. In: Griswold MD, editor. Sertoli Cell Biology. 2nd ed. Amsterdam: Elsevier; pp; 2015. p. 333–83.

    Chapter  Google Scholar 

  69. de Rooij DG. The spermatogonial stem cell niche. Microsc Res Tech. 2009;72:580–5.

    Article  PubMed  CAS  Google Scholar 

  70. Phillips BT, Gassei K, Orwig KE. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 2010;365:1663–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zwain I, Morris PL, Cheng CY. Identification of an inhibitory factor from a Sertoli clonal cell line (TM4) that modulates adult rat Leydig cell steroidogenesis. Mol Cell Endocrinol. 1991;80:115–26.

    Article  CAS  PubMed  Google Scholar 

  72. Zwain IH, Cheng CY. Rat seminiferous tubular culture medium contains a biological factor that inhibits Leydig cell steroidogenesis: its purification and mechanism of action. Mol Cell Endocrinol. 1994;104:213–27.

    Article  CAS  PubMed  Google Scholar 

  73. Saez JM, Avallet O, Naville D, Perrard-Sapori MH, Chatelain PG. Sertoli-Leydig cell communications. Ann N Y Acad Sci. 1989;564:210–31.

    Article  CAS  PubMed  Google Scholar 

  74. Tio S, Koppenaal D, Bardin C, Cheng C. Purification of gonadotropin surge inhibiting factor from Sertoli cell-enriched culture medium. Biochem Biophys Res Commun. 1994;199:1229–36.

    Article  CAS  PubMed  Google Scholar 

  75. Rebourcet D, O’Shaughnessy PJ, Monteiro A, Milne L, Cruickshanks L, Jeffrey N, et al. Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis. PLoS ONE. 2014;9(8):e105687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Rebourcet D, O’Shaughnessy PJ, Pitetti JL, Monteiro A, O’Hara L, Milne L, et al. Sertoli cells control peritubular myoid cell fate and support adult Leydig cell development in the prepubertal testis. Development. 2014;141(10):2139–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wen Q, Zheng QS, Li XX, Hu ZY, Gao F, Cheng CY, et al. Wt1 dictates the fate of fetal and adult Leydig cells during development in the mouse testis. Am J Physiol Endocrinol Metab. 2014;307(12):E1131–43.

    Article  CAS  PubMed  Google Scholar 

  78. Jegou B. The Sertoli-germ cell communication network in mammals. Int Rev Cytol. 1993;147:25–96.

    Article  CAS  PubMed  Google Scholar 

  79. Griswold M. Interactions between germ cells and Sertoli cells in the testis. Biol Reprod. 1995;52:211–6.

    Article  CAS  PubMed  Google Scholar 

  80. Skinner M, Tung P, Fritz I. Cooperativity between Sertoli cells and testicular peritubular cells in the production and deposition of extracellular matrix components. J Cell Biol. 1985;100:1941–7.

    Article  CAS  PubMed  Google Scholar 

  81. Skinner MK, Fetterolf PM, Anthony CT. Purification of a paracrine factor, P-Mod-S, produced by testicular peritubular cells that modulates Sertoli cell function. J Biol Chem. 1988;263:2884–90.

    CAS  PubMed  Google Scholar 

  82. Cheng CY, Grima J, Stahler MS, Guglielmotti A, Silvestrini B, Bardin CW. Sertoli cell synthesizes and secretes a protease inhibitor, a2-macroglobulin. Biochemistry. 1990;29:1063–8.

    Article  CAS  PubMed  Google Scholar 

  83. Zwain IH, Grima J, Stahler MS, Saso L, Cailleau J, Verhoeven G, et al. Regulation of Sertoli cell a2-macroglobulin and clusterin (SGP-2) secretion by peritubular myoid cells. Biol Reprod. 1993;48:180–7.

    Article  CAS  PubMed  Google Scholar 

  84. Mruk DD, Cheng CY. An in vitro system to study Sertoli cell blood-testis barrier dynamics. Methods Mol Biol. 2011;763:237–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Welsh M, Saunders PT, Atanassova N, Sharpe RM, Smith LB. Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J. 2009;23:4218–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rebourcet D, Wu J, Cruickshanks L, Smith SE, Milne L, Fernando A, et al. Sertoli Cells Modulate Testicular Vascular Network Development, Structure, and Function to Influence Circulating Testosterone Concentrations in Adult Male Mice. Endocrinology. 2016;157(6):2479–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Allen E. Studies on cell division in the albino rat. J Morphol. 1918;31:133–85.

    Article  Google Scholar 

  88. Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972;52(1):198–236.

    CAS  PubMed  Google Scholar 

  89. Clermont Y. Renewal of spermatogonia in man. Am J Anat. 1966;118(2):509–24.

    Article  CAS  PubMed  Google Scholar 

  90. Schulze C. Morphological characteristics of the spermatogonial stem cells in man. Cell Tissue Res. 1979;198(2):191–9.

    Article  CAS  PubMed  Google Scholar 

  91. Boitani C, Di Persio S, Esposito V, Vicini E. Spermatogonial cells: mouse, monkey and man comparison. Semin Cell Dev Biol. 2016.

    Google Scholar 

  92. Sandlow JI, Feng HL, Cohen MB, Sandra A. Expression of c-KIT and its ligand, stem cell factor, in normal and subfertile human testicular tissue. J Androl. 1996;17(4):403–8.

    CAS  PubMed  Google Scholar 

  93. Unni SK, Modi DN, Pathak SG, Dhabalia JV, Bhartiya D. Stage-specific localization and expression of c-kit in the adult human testis. J Histochem Cytochem. 2009;57(9):861–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Medrano JV, Marques-Mari AI, Aguilar CE, Riboldi M, Garrido N, Martinez-Romero A, et al. Comparative analysis of the germ cell markers c-KIT, SSEA-1 and VASA in testicular biopsies from secretory and obstructive azoospermias. Mol Hum Reprod. 2010;16(11):811–7.

    Article  CAS  PubMed  Google Scholar 

  95. Gassei K, Ehmcke J, Dhir R, Schlatt S. Magnetic activated cell sorting allows isolation of spermatogonia from adult primate testes and reveals distinct CFRa1-positive subpopulations in men. J Med Primatol. 2010;39:83–91.

    Article  CAS  PubMed  Google Scholar 

  96. Feng HL, Sandlow JI, Sparks AE, Sandra A, Zheng LJ. Decreased expression of the c-kit receptor is associated with increased apoptosis in subfertile human testes. Fertil Steril. 1999;71(1):85–9.

    Article  CAS  PubMed  Google Scholar 

  97. Hogarth CA, Griswold MD. The key role of vitamin A in spermatogenesis. J Clin Invest. 2010;120:956–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chung SS, Wang X, Roberts SS, Griffey SM, Reczek PR, Wolgemuth DJ. Oral administration of a retinoic acid receptor antagonist reversibly inhibits spermatogenesis in mice. Endocrinology. 2011;152:2492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chung SS, Wang X, Wolgemuth DJ. Prolonged Oral Administration of a Pan-Retinoic Acid Receptor Antagonist Inhibits Spermatogenesis in Mice With a Rapid Recovery and Changes in the Expression of Influx and Efflux Transporters. Endocrinology. 2016;157(4):1601–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Amory JK, Muller CH, Shimshoni JA, Isoherranen N, Paik J, Moreb JS, et al. Suppression of spermatogenesis by bisdichloroacetyldiamines is mediated by inhibition of testicular retinoic acid biosynthesis. J Androl. 2011;32(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  101. Paik J, Haenisch M, Muller CH, Goldstein AS, Arnold S, Isoherranen N, et al. Inhibition of retinoic acid biosynthesis by the bisdichloroacetyldiamine WIN 18,446 markedly suppresses spermatogenesis and alters retinoid metabolism in mice. J Biol Chem. 2014;289(21):15104–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Heller CG, Moore DJ, Paulsen CA. Suppression of spermatogenesis and chronic toxicity in men by a new series of bis(dichloroacetyl) diamines. Toxicol Appl Pharmacol. 1961;3:1–11.

    Article  CAS  PubMed  Google Scholar 

  103. Drobeck HP, Coulston F. Inhibition and recovery of spermatogenesis in rats, monkeys, and dogs medicated with bis(dichloroacetyl) diamines. Exp Mol Pathol. 1962;1:251–74.

    Article  CAS  PubMed  Google Scholar 

  104. Plant TM. Undifferentiated primate spermatogonia and their endocrine control. Trends Endocrinol Metab. 2010;21:488–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. van Alphen MM, van de Kant HJ, de Rooij DG. Follicle-stimulating hormone stimulates spermatogenesis in the adult monkey. Endocrinology. 1988;123:1449–55.

    Article  PubMed  Google Scholar 

  106. Simorangkir DR, Ramaswarmy S, Marshall GR, Pohl CR, Plant TM. A selective monotropic elevation of FSH but not that of LH, amplifies the proliferation and differentiation of spermatogonia in the adult rhesus monkey (Macaca mulatta). Hum Reprod. 2009;24:1584–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Selice R, Ferlin A, Garolla A, Caretta N, Foresta C. Effects of endogenous FSH on normal human spermatogenesis in adults. Int J Androl. 2011;34:e511–7.

    Article  CAS  PubMed  Google Scholar 

  108. Ruwanpura SM, McLachlan RI, Matthiesson KL, Meachem SJ. Gonadotrophins regulate germ cell survival, not proliferation, in normal adult men. Hum Reprod. 2008;23:403–11.

    Article  CAS  PubMed  Google Scholar 

  109. Schulze W, Rehder U. Organization and morphogenesis of the human seminiferous epithelium. Cell Tissue Res. 1984;237(3):395–407.

    Article  CAS  PubMed  Google Scholar 

  110. Feng CW, Bowles J, Koopman P. Control of mammalian germ cell entry into meiosis. Mol Cell Endocrinol. 2014;382(1):488–97.

    Article  CAS  PubMed  Google Scholar 

  111. Boussouar F, Benahmed M. Lactate and energy metabolism in male germ cells. Trends Endocrinol Metab. 2004;15:345–50.

    Article  CAS  PubMed  Google Scholar 

  112. Dias TR, Alves MG, Silva BM, Oliveira BF. Sperm glucose transport and metabolism in diabetic individuals. Mol Cell Endocrinol. 2014;396:37–45.

    Article  CAS  PubMed  Google Scholar 

  113. Oliveira PF, Martins AD, Moreira AC, Cheng CY, Alves MG. The Warburg effect revisited - lession from the Sertoli cell. Med Res Rev. 2015;35:126–51.

    Article  PubMed  Google Scholar 

  114. Oliveira BF, Alves MG, Rato L, Silva J, Sa R, Barros A, et al. Influence of 5a-dihydrotestosterone and 17b-estradiol on human Sertoli cells metabolism. Int J Androl. 2011;34:e612–20.

    Article  CAS  PubMed  Google Scholar 

  115. McLachlan RI, Rajpert-De Meyts E, Hoei-Hansen CE, de Kretser DM, Skakkebaek NE. Histological evaluation of the human testis—Approaches to optimizing the clinical value of the assessment: Mini Review. Hum Reprod. 2007;22:2–16.

    Article  CAS  PubMed  Google Scholar 

  116. Clermont Y, Leblond CP. Spermiogenesis of man, monkey, ram and other mammals as shown by the periodic acid-Schiff technique. Am J Anat. 1955;96(2):229–53.

    Article  CAS  PubMed  Google Scholar 

  117. de Kretser DM. Ultrastructural features of human spermiogenesis. Z Zellforsch Mikrosk Anat. 1969;98(4):477–505.

    Article  PubMed  Google Scholar 

  118. Clermont Y, Morales C, Hermo L. Endocytic activities of Sertoli cells in the rat. Ann NY Acad Sci. 1987;513:1–15.

    Article  CAS  PubMed  Google Scholar 

  119. Cheng CY, Mruk DD. Biochemistry of Sertoli cell/germ cell junctions, germ cell transport, and spermiation in the seminiferous epithelium. In: Sertoli Cell Biology, 2nd Edition. Ed. Griswold, M.D., Amsterdam, Elsevier; pp. 333–383. doi: 10.1016/B978-0-12-417047-6.00012.0. 2015.

  120. Roosen-Runge EC. Kinetics of spermatogenesis in mammals. Ann N Y Acad Sci. 1952;55(4):574–84.

    Article  CAS  PubMed  Google Scholar 

  121. Leblond CP, Clermont Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci. 1952;55(4):548–73.

    Article  CAS  PubMed  Google Scholar 

  122. Hess RA, de Franca LR. Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol. 2008;636:1–15.

    Article  PubMed  Google Scholar 

  123. Xiao X, Mruk DD, Wong CK, Cheng CY. Germ cell transport across the seminiferous epithelium during spermatogenesis. Physiology (Bethesda). 2014;29(4):286–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Heller CG, Clermont Y. Spermatogenesis in man: an estimate of its duration. Science. 1963;140(3563):184–6.

    Article  CAS  PubMed  Google Scholar 

  125. Oakberg EF. Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat. 1956;99(3):507–16.

    Article  CAS  PubMed  Google Scholar 

  126. Clermont Y, Leblond CP, Messier B. Duration of the cycle of the seminal epithelium of the rat. Arch Anat Microsc Morphol Exp. 1959;48(Suppl):37–55.

    CAS  PubMed  Google Scholar 

  127. Ehmcke J, Wistuba J, Schlatt S. Spermatogonial stem cells: questions, models and perspectives. Human Reprod Update. 2006;12:275–82.

    Article  CAS  Google Scholar 

  128. de Kretser DM, Kerr JB. The cytology of the testis. In: Knobil E, Neill JB, Ewing LL, Greenwald GS, Markert CL, Pfaff DW, editors. The Physiology of Reproduction, vol. 1. New York: Raven Press; 1988. p. 837–932.

    Google Scholar 

  129. McLachlan RI, O’Donnell L, Meachem SJ, Stanton PG, De Kretser DM, Pratis K, et al. Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man. Recent Prog Horm Res. 2002;57:149–79.

    Article  CAS  PubMed  Google Scholar 

  130. Handelsman DJ. Hormonal regulation of spermatogenesis: insights from constructing genetic models. Reprod Fertil Dev. 2011;23:507–19.

    Article  CAS  PubMed  Google Scholar 

  131. Itman CM, Mendis SH, Barakat B, Loveland KL. All in the family: TGF-b family action in testis development. Reproduction. 2006;132:233–46.

    Article  CAS  PubMed  Google Scholar 

  132. Foresta C, Selice R, Garolla A, Ferlin A. Follicle-stimulating hormone treatment of male infertility. Curr Opin Urol. 2008;18:602–7.

    Article  PubMed  Google Scholar 

  133. De Kretser DM, Hedger MP, Loveland KL, Phillips DJ. Inhibins, activins and follistatin in reproduction. Hum Reprod Update. 2002;8:529–41.

    Article  PubMed  Google Scholar 

  134. Winters SJ, Moore JP. Paracrine control of gonadotrophs. Semin Reprod Med. 2007;25:379–87.

    Article  CAS  PubMed  Google Scholar 

  135. Winters SJ, Moore JP. Intra-pituitary regulation of gonadotrophs in male rodents and primates. Reproduction. 2004;128:13–23.

    Article  CAS  PubMed  Google Scholar 

  136. McLachlan R, Wreford N, O’Donnell L, de Kretser D, Robertson D. The endocrine regulation of spermatogenesis: independent roles for testosterone and FSH. J Endocr. 1996;148:1–9.

    Article  CAS  PubMed  Google Scholar 

  137. Huhtaniemi I. A short evolutionary history of FSH- = stimulated spermatogenesis. Hormones (Athens). 2015;14:468–78.

    PubMed  Google Scholar 

  138. Stanton PG. Regulation of the blood-testis barrier. Semin Cell Dev Biol (in press; PMID:27353840; DOI:101016/jsemcdb201606018). 2016.

    Google Scholar 

  139. Griswold MD, Heckert L, Linder C. The molecular biology of the FSH receptor. J Steroid Biochem Mol Biol. 1995;53:215–8.

    Article  CAS  PubMed  Google Scholar 

  140. Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet. 1997;15:201–4.

    Article  CAS  PubMed  Google Scholar 

  141. Kumar TR. FSHbeta knockout mouse model: a decade ago and into the future. Endocrine. 2009;36(1):1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Plant TM, Marshall GR. The functional significance of SH in spermatogenesis and the control of its secretion in male primates. Endocr Rev. 2001;22:764–86.

    Article  CAS  PubMed  Google Scholar 

  143. Walker WH, Cheng J. FSH and testosterone signaling in Sertoli cells. Reproduction. 2005;130:15–28.

    Article  CAS  PubMed  Google Scholar 

  144. O’Shaughnessy PJ, Johnston H, Willerton L, Baker PJ. Failure of normal adult Leydig cell development in androgen-receptor-deficient mice. J Cell Sci. 2002;115:3491–6.

    PubMed  Google Scholar 

  145. Caroppo E, Niederberger C, Vizziello GM, D’Amato G. Recombinant human follicle-stimulating hormone as a pretreatment for iodiopathic oligoasthenoteratozoospermic patients undergoing intracytoplasmic sperm injection. Fertil Sertil. 2003;80:1398–403.

    Article  Google Scholar 

  146. Santi D, Granata AR, Simoni M. Follicle-stimulating hormone treatement of male idiopathic infertility improves pregancy rate: a meta-analysis. Endocr Connect. 2015;4:46–58.

    Google Scholar 

  147. Saez JM. Leydig cells: endocrine, paracrine, and autocrine regulation. Endocr Rev. 1994;15:574–626.

    Article  CAS  PubMed  Google Scholar 

  148. Ascoli M, Fanelli F, Segaloff DL. The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev. 2002;23:141–74.

    Article  CAS  PubMed  Google Scholar 

  149. Themmen APN, Huhtaniemi IT. Mutations of gonadotropins and gonadotropin receptors: Elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev. 2000;21:551–83.

    Article  CAS  PubMed  Google Scholar 

  150. Latronico AC, Segaloff DL. Naturally occurring mutations of the luteinizing-hormone receptor: Lessons learned about rerproductive physiology and G protein-coupled receptors. Am J Human Genet. 1999;65:949–58.

    Article  CAS  Google Scholar 

  151. Latronico AC, Arnhold IJ. Inactivating mutations of the human luteinizing hormone receptor in both sexes. Semin Reprod Med. 2012;30:382–6.

    Article  CAS  PubMed  Google Scholar 

  152. Winters SJ. Endocrine evaluatiojn of testicular function. Endocrinol Metab Clin North Am. 1994;23:709–23.

    CAS  PubMed  Google Scholar 

  153. Scott HM, Mason JI, Sharpe RM. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev. 2009;30(7):883–925.

    Article  CAS  PubMed  Google Scholar 

  154. Jarow JP, Wright WW, Brown TR, Yan X, Zirkin BR. Bioactivity of androgens within the testes and serum of normal men. J Androl. 2005;26(3):343–8.

    Article  CAS  PubMed  Google Scholar 

  155. Cheng CY, Gunsalus GL, Morris ID, Turner TT, Bardin CW. The heterogeneity of rat androgen binding protein (rABP) in the vascular compartment differs from that in the testicular tubular lumen: further evidence for bidirectional secretion of rABP. J Androl. 1986;7:175–9.

    Article  CAS  PubMed  Google Scholar 

  156. Wang RS, Yeh S, Tzeng CR, Chang C. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev. 2009;30:119–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Nieschlag E, Wickings EJ, Mauss J. Endocrine testicular function in vivo and in vitro in infertile men. Acta Endocrinol. 1979;90:544–51.

    CAS  PubMed  Google Scholar 

  158. Roth MY, Lin K, Amory JK, Matsumoto AM, Anawalt BD, Snyder CN, et al. Serum LH correlates highly with intratesticular steroid levels in normal men. J Androl. 2009;31:138–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Oduwole OO, Vydra N, Wood NE, Samanta L, Owen L, Keevil B, et al. Overlapping dose responses of spermatogenic and extragonadal testosterone actions jeopardize the principle of hormonal male contraception. FASEB J. 2014;28:2566–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Shinjo E, Shiraishi K, Matsuyama H. The effect of human chorionic gonadotropin-based hormonal therapy on intratesticular testosterone levels and spermatogonial DNA synthesis in men with non-obstructive azoospermia. Andrology. 2013;1(6):929–35.

    Article  CAS  PubMed  Google Scholar 

  161. Yan HHN, Mruk DD, Lee WM, Cheng CY. Blood-testis barrier dynamics are regulated by testosterone and cytokines via their differential effects on the kinetics of protein endocytosis and recycling in Sertoli cells. FASEB J. 2008;22:1945–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Xiao X, Wong EWP, Lie PPY, Mruk DD, Wong CKC, Cheng CY. Cytokines, polarity proteins and endosomal protein trafficking and signaling—the Sertoli cell blood-testis barrier in vitro as a study model. Methods Enzymol. 2014;534:181–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li MWM, Mruk DD, Lee WM, Cheng CY. Cytokines and junction restructuring events during spermatogenesis in the testis: An emerging concept of regulation. Cytokine Growth Factor Rev. 2009;20:329–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Smith LB, Walker WH. The regulation of spermatogenesis by androgens. Semin Cell Dev Biol. 2014;30:2–13.

    Article  CAS  PubMed  Google Scholar 

  165. Pihlajamaa P, Sahu B, Janne OA. Determinants of receptor- and tissue-specific actions in androgen signaling. Endocr Rev. 2015;36(4):357–84.

    Article  CAS  PubMed  Google Scholar 

  166. Walker WH. Non-classical actions of testosterone and spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 2010;365:1557–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kato Y, Shiraishi K, Matsuyama H. Expression of testicular androgen receptor in non-obstructive azoospermia and its change after hormonal therapy. Andrology. 2014;2:734–40.

    Article  CAS  PubMed  Google Scholar 

  168. Griswold M. The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol. 1998;9:411–6.

    Article  CAS  PubMed  Google Scholar 

  169. De Gendt K, Swinnen J, Saunders P, Schoonjans L, Dewerchin M, Devos A, et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci USA. 2004;101:1327–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Chang C, Chen Y, Yeh S, Xu D, Wang R, Guillou F, et al. Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc Natl Acad Sci USA. 2004;101:6876–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Holdcraft RW, Braun RE. Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development. 2004;131:459–67.

    Article  CAS  PubMed  Google Scholar 

  172. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature. 1991;352:77–9.

    Article  PubMed  Google Scholar 

  173. Delli Muti N, Agarwal A, Buldreghini E, Gioia A, Lenzi A, Boscaro M, et al. Have androgen receptor gene CAG and GGC repeat polymorphisms an effect on sperm motility in infertile men? Andrologia. 2014;46(5):564–9.

    Article  CAS  PubMed  Google Scholar 

  174. Fietz D, Geyer J, Kliesch S, Gromoll J, Bergmann M. Evaluation of CAG repeat length of androgen receptor expressing cells in human testes showing different pictures of spermatogenic impairment. Histochem Cell Biol. 2011;136:689–97.

    Article  CAS  PubMed  Google Scholar 

  175. Giagulli VA, Carbone MD, De Pergola G, Guastamacchia E, Resta F, Licchelli B, et al. Could androgen receptor gene CAG tract polymorphism affect spermatogenesis in men with idiopathic infertility? J Assit Reprod Genet. 2014;31:689–97.

    CAS  Google Scholar 

  176. Casella R, Maduro MR, Misfud A, Lipshultz LI, Yong EL, Lamb DJ. Androgen receptor gene polyglutamine length is associated with testicular histology in infertile patients. J Urol. 2003;169:224–7.

    Article  CAS  PubMed  Google Scholar 

  177. Chen YH, Xu HY, Wang ZY, Zhu ZH, Li CD, Wu ZG, et al. An insertion mutation in the androgen receptor gene in a patient with azoospermia. Asian J Androl. 2015;17(5):857–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Tordjman KM, Yaron M, Berkovitz A, Botchan A, Sultan C, Lumbroso S. Fertility after high-dose testosterone and intracytoplasmic sperm injection in a patient with androgen insensitivity syndrome with a previously unreported androgen receptor mutation. Andrologia. 2014;46:703–6.

    Article  CAS  PubMed  Google Scholar 

  179. Xu HY, Li CD, Tang LL, Wang LL, Yu X, Gu XM, et al. An infertile man with gynecomastia caused by a novel mutation of the androgen receptor gene. Asian J Androl. 2015;17(3):509–10.

    CAS  PubMed  Google Scholar 

  180. Petroli RJ, Hiort O, Struve D, Maciel-Guerra AT, Guerra-Junior G, Palandi de Mello M, et al. Preserved fertility in a patient with gyknecomastia associated with the p.Pro695Ser mutation in the androgen receptor. Sex Dev. 2014;8:350–5.

    Article  PubMed  Google Scholar 

  181. Carreau S, Wolczynski S, Galeraud-Denis I. Aromatase, estrogens and human male reproduction. Phil Trans R Soc Lond B Biol Sci. 2010;365:1571–9.

    Article  CAS  Google Scholar 

  182. Hess RA. Estrogen in the adult male reproductive tract: A review. Reprod Biol Endocrinol. 2003;1(52):1–14.

    Google Scholar 

  183. Zhou Q, Nie R, Prins GS, Saunders PTK, Katzenellenbogen BS, Hess RA. Localization of androgen and estrogen receptors in adult male mouse reproductive tract. J Androl. 2002;23:870–81.

    CAS  PubMed  Google Scholar 

  184. Kotula-Balak M, Gancarczyk M, Sadowska J, Bilinska B. The expression of aromatase, estrogen receptor a and estrogen receptor b in mouse Leydig cells in vitro that derived from crytorchid males. Eur J Histochem. 2005;49:59–62.

    Article  CAS  PubMed  Google Scholar 

  185. Lucas TF, Siu ER, Esteves CA, Monteiro HP, Oliverira CA, Porto CS, et al. 17b-estradiol induces the translocation of the estrogen receptors ESR1 and ESR2 to the cell membrane, MAPK3/1 phosphorylation and proliferation of cultured immature rat Sertoli cells. Biol Reprod. 2008;78:101–14.

    Article  CAS  PubMed  Google Scholar 

  186. Cheng CY, Boettcher B, Rose RJ, Kay DJ, Tinneberg HR. The binding of sex steroids to human spermatozoa. An autoradiographic study. Int J Androl. 1981;4:1–17.

    Article  CAS  PubMed  Google Scholar 

  187. Durkee TJ, Mueller M, Zinaman M. Identification of estrogen receptor protein and messenger ribonucelic acid in human spermatozoa. Am J Obstet Gynecol. 1998;178:1288–97.

    Article  CAS  PubMed  Google Scholar 

  188. Fietz D, Bergmann M, Hartmann K. In situ hybridization of estrogen receptors a and b and GPER in the human testis. Methods Mol Biol. 2016;1366:189–205.

    Article  PubMed  Google Scholar 

  189. Pelletier G, El-Alfy M. Immunocytochemical localization of estrogen receptors a and b in the human reproductive organs. J Clin Endocrinol Metab. 2000;85:4835–40.

    CAS  PubMed  Google Scholar 

  190. Khattri A, Pandey RK, Gupta NJ, Chakravarty B, Deenadayal M, Singh L, et al. Estrogen receptor beta gene mutations in Indian infertile men. Mol Hum Reprod. 2009;15(8):513–20.

    Article  CAS  PubMed  Google Scholar 

  191. Carani C, Rochira V, Faustini-Fustini M, Balestrieri A, Granata AR. Roel of oestrogen in male sexual behaviour: Insights from the natural model of aromatase deficiency. Clin Endocrinol. 1999;51:517–24.

    Article  CAS  Google Scholar 

  192. Finkelstein JS, Yu EW, Burnett-Bowie SA. Gonadal steroids and body composition, strength, and sexual function in men. N Engl J Med. 2013;369:2457.

    Article  CAS  PubMed  Google Scholar 

  193. Sharpe RM. Hormones and testis development and the possible adverse effects of environmental chemicals. Toxicol Lett. 2001;120:221–32.

    Article  CAS  PubMed  Google Scholar 

  194. Stahl PJ, Stember DS, Goldstein M. Contemporary management of male infertility. Annu Rev Med. 2012;63:525–40.

    Article  CAS  PubMed  Google Scholar 

  195. Song R, Hennig GW, Wu Q, Jose C, Zheng H, Yan W. Male germ cells express abundant endogenous siRNAs. Proc Natl Acad Sci USA. 2011;108:13159–131564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Song R, Ro S, Michaels JD, Park C, McCarrey JR, Yan W. Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet. 2009;41:488–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Holt JE, Stanger SJ, Nixon B, McLaughlin EA. Non-coding RNA in spermatogenesis and epididymal maturation. Adv Exp Med Biol. 2016;886:95–120.

    Article  CAS  PubMed  Google Scholar 

  198. de Mateo S, Sassone-Corsi P. Regulation of spermatogenesis by small non-coding RNAs: role of the germ granule. Semin Cell Dev Biol. 2014;29:84–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol. 2010;11:252–63.

    Article  CAS  PubMed  Google Scholar 

  200. Eisenberg I, Kotaja N, Goldman-Wohl D, Imbar T. microRNA in Human Reproduction. Adv Exp Med Biol. 2015;888:353–87.

    Article  PubMed  Google Scholar 

  201. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  202. Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol. 2009;10:141–8.

    Article  CAS  PubMed  Google Scholar 

  203. Meikar O, Da Ros M, Korhonen H, Kataja N. Chromatoid body and small RNAs in male germ cells. Reproduction. 2011;142:195–209.

    Article  CAS  PubMed  Google Scholar 

  204. Yadav RP, Kotaja N. Small RNAs in spermatogenesis. Mol Cell Endocrinol. 2014;382(1):498–508.

    Article  CAS  PubMed  Google Scholar 

  205. Lian J, Zhang X, Tian H, Liang N, Wang Y, Liang C, et al. Altered microRNA expression in patients with non-obstructive azoospermia. Reprod Biol Endocrinol. 2009;7:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Wu W, Qin Y, Li Z, Dong J, Dai J, Lu C, et al. Genome-wide microRNA expression profiling in idiopathic non-obstructive azoospermia: significant up-regulation of miR-141, miR-429 and miR-7-1-3p. Hum Reprod. 2013;28(7):1827–36.

    Article  CAS  PubMed  Google Scholar 

  207. Wang C, Yang C, Chen X, Yao B, Yang C, Zhu C, et al. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem. 2011;57(12):1722–31.

    Article  CAS  PubMed  Google Scholar 

  208. Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, et al. Dicer is required for haploid male germ cell differentiation in mice. PLoS ONE. 2011;6(9):e24821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Korhonen HM, Yadav RP, Da Ros M, Chalmel F, Zimmermann C, Toppari J, et al. DICER regulates the formation and maintenance of cell-cell Junctions in the mouse seminiferous epithelium. Biol Reprod. 2015;93(6):139.

    Article  PubMed  CAS  Google Scholar 

  210. Papaioannou MD, Pitetti JL, Ro S, Park C, Aubry F, Schaad O, et al. Sertoli cell Dicer is essential for spermatogenesis in mice. Dev Biol. 2009;326(1):250–9.

    Article  CAS  PubMed  Google Scholar 

  211. Winters SJ. Monitoring testosterone levels in testosterone-treated men. Curr Med Res Opin. 2016;32(2):271–2.

    Article  CAS  PubMed  Google Scholar 

  212. Kiess W, Wagner IV, Kratzsch J, Korner A. Male obesity. Endocrinol Metab Clin North Am. 2015;44:761–72.

    Article  PubMed  Google Scholar 

  213. Chambers TJG, Anderson RA. The impact of obesity on male fertility. Hormones. 2015;14:563–8.

    PubMed  Google Scholar 

  214. Stokes VJ, Anderson RA, George JT. How does obesity affect fertility in men—and what are the treatment options? Clin Endocrinol. 2015;82(5):633–8.

    Article  Google Scholar 

  215. Teerds KJ, de Rooij DG, Keijer J. Functional relationship between obesity and male reproduction: from humans to animal models. Hum Reprod Update. 2011;17(5):667–83.

    Article  CAS  PubMed  Google Scholar 

  216. Ramlau-Hansen CH, Hansen M, Jensen CR, Olsen JC, Bonde JP, Thulstrup AM. Semen quality and reproductive hormones according to birthweight and body mass index in childhood and adult lief: two decades of follow-up. Fertil Sertil. 2010;94:610–8.

    Article  CAS  Google Scholar 

  217. de Boer H, Verschoor L, Ruinemans-Koerts J, Jansen M. Letrozole normalizes serum testosterone in severely obese men with hypogonadotropic hypogonadism. Diabetes Obesity Metabol. 2005;7:211–5.

    Article  CAS  Google Scholar 

  218. Schneider G, Kirschner MA, Berkowitz R, Ertel NH. Increased estrogen production in obese men. J Clin Endocrinol Metab. 1979;48:633–8.

    Article  CAS  PubMed  Google Scholar 

  219. Ghosh S, Ashcraft K, Jahid MJ, April C, Ghajar CM, Ruan J, et al. Regulation of adipose oestrogen output by mechanical stress. Nat Commun. 2013;4:1821.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Dhindsa S, Batra M, Kuhadiya N, Dandona P. Oestradiol concentrations are not elevated in obesity-associated hypogonadotrophic hypogonadism. Clin Endocrinol. 2014;80(3):464.

    Article  CAS  Google Scholar 

  221. Burger HG. Physiological principles of endocrine replacement: estrogen. Horm Res. 2001;56(Suppl 1):82–5.

    CAS  PubMed  Google Scholar 

  222. Gutorova NV, Kleshchyov MA, Tipisova EV, Osadchuk LV. Effects of overweight and obesity on the spermogram values and levels of reproductive hormones in the male population of the European north of Russia. Bull Exp Biol Med. 2014;157:95–8.

    Article  CAS  PubMed  Google Scholar 

  223. Giagulli VA, Kaufman JM, Vermeulen A. Pathogenesis of the decreased androgen levels in obese men. J Clin Endocrinol Metab. 1994;79:997–1000.

    CAS  PubMed  Google Scholar 

  224. Veldhuis J, Yang R, Roelfsema F, Takahashi P. Proinflammatory Cytokine Infusion Attenuates LH’s Feedforward on Testosterone Secretion: Modulation by Age. J Clin Endocrinol Metab. 2016;101(2):539–49.

    Article  PubMed  CAS  Google Scholar 

  225. Mah PM, Wittert GA. Obesity and testicular function. Mol Cell Endocrinol. 2010;316:180–6.

    Article  CAS  PubMed  Google Scholar 

  226. Nielsen TL, Hagen C, Wraae K, Brixen K, Petersen PH, Haug E, et al. Visceral and subcutaneous adipose tissue assessed by magnetic resonance imaging in relation to circulating androgens, sex hormone-binding globulin, and luteinizing hormone in young men. The Journal of clinical endocrinology and metabolism. 2007;92(7):2696–705.

    Article  CAS  PubMed  Google Scholar 

  227. Landry D, Cloutier F, Martin LJ. Implications of leptin in neuroendocrine regulation of male reproduction. Reprod Biol Endocrinol. 2013;13:1–14.

    Google Scholar 

  228. Luboshitzky R, Lavie L, Shen-Orr Z, Herer O. Altered luteinizing hormone and testosterone secretion in middle-aged obese men with obstructive sleep apnea. Obes Res. 2005;13:780–6.

    Article  CAS  PubMed  Google Scholar 

  229. Ec Tsai. Matsumoto AM, Fujimoto WY, Boyko EJ. Association of bioavailable, free, and total testosterone with insulin resistance: Influence of sex hormone-bindign globulin and body fat. Diabetes Care. 2004;27:861–8.

    Article  Google Scholar 

  230. Hammoud AO, Gibson M, Peterson CM, Hamilton BD, Carrell DT. Obesity and male reproductive potential. J Androl. 2006;27:619–26.

    Article  PubMed  Google Scholar 

  231. Rato L, Alves MG, Cavaco JE, Oliveeira PF. High-energy diets: a threat for male fertility? Obesity Rev. 2014;15:996–1007.

    Article  CAS  Google Scholar 

  232. Samavat J, Natali I, Degl’Innocenti S, filimberti E, Cantini G, Di Franco A, et al. Acrosome reaction is impaired in spermatozoa of obese men: a preliminary study. Fertil Steril. 2014;102:1274–81.

    Google Scholar 

  233. Palmer NO, Bakos HW, Fullston T, Lane M. Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis. 2012;2(4):253–63.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Feldman HA, Johannes CB, Derby CA, Kleinman KP, Mohr BA, Araujo AB, et al. Erectile dysfunction and coronary risk factors: prospective results from the Massachusetts male aging study. Prev Med. 2000;30:328–38.

    Article  CAS  PubMed  Google Scholar 

  235. Lucchese M, Maggi M. Hypogonadism as a new comorbidity in male patient’s selection for bariatric surgery: towards an extended concept of metabolic surgery? Obes Surg. 2013;23:2018–9.

    Article  CAS  PubMed  Google Scholar 

  236. Hammoud A, Gibson M, Hunt SC, Adams TD, Carrell DT, Kolotkin RL, et al. Effect of Roux-en-Y gastric bypass surgery on the sex steroids and quality of life in obese men. J Clin Endocrinol Metab. 2009;94(4):1329–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. di Frega AS, Dale B, Di Matteo L, Wilding M. Secondary male factor infertility after Roux-en-Y gastric bypass for morbid obesity: case report. Human Reprod. 2005;20:997–8.

    Article  Google Scholar 

  238. Lazaros L, Hatzi E, Markoula S, Takenaka A, sofikitis N, Zikopoulos K, et al. Dramatic reduction in sperm parameters following bariatric surgery: report of two cases. Andrologia. 2012;44:428–32.

    Google Scholar 

  239. Legro RS, Kunselman AR, Meadows JW, Kesner JS, Krieg EFJ, Rogers AM, et al. Time-related increase in urinary testosterone levels and stable semen analysis parameters after bariatric surgery in men. Reprod Biomed Online. 2015;30:150–6.

    Article  CAS  PubMed  Google Scholar 

  240. Kawakami S, Winters SJ. Regulation of leutinizing hormone secretion and subunit messenger ribonucleic acid expression by gonadal steroids in perifused pituitary cells from male monkeys and rats. Endocrinology. 1999;140:3587–93.

    CAS  PubMed  Google Scholar 

  241. Nakagawa T, Sharma M, Nabeshima Y, Braun RE, Yoshida S. Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science. 2010;328(5974):62–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Heller CG, Clermont Y. Kinetics of the germinal epithelium in man. Recent Prog Horm Res. 1964;20:545–75.

    CAS  PubMed  Google Scholar 

  243. Muciaccia B, Boitani C, Berloco BP, Nudo F, Spadetta G, Stefanini M, et al. Novel stage classification of human spermatogenesis based on acrosome development. Biol Reprod. 2013;89(3):60.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Drs. Stephen Winters and Ilpo Huhtaniemi for their helpful remarks, comments, insightful thoughts, and suggestions during the preparation of this manuscript for this book. Without this valuable help, this Chapter could not have been written.

This work was supported by grants from the National Institutes of Health, R01 HD056034 (to C.Y.C.), U54 HD029990 Project 5 (to C.Y.C.); National Natural Science Foundation of China (NSFC) 31371176 (to X.X.), China Qianjiang Talents Program QJD1502029 (to X.X.) and Zhejiang Province Department of Science Technology Funding 2016F10010 (to X.X.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yan Cheng PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chen, H., Mruk, D., Xiao, X., Cheng, C.Y. (2017). Human Spermatogenesis and Its Regulation. In: Winters, S., Huhtaniemi, I. (eds) Male Hypogonadism. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-53298-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53298-1_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-53296-7

  • Online ISBN: 978-3-319-53298-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics