Oncologic Applications of Magnetic Resonance Guided Focused Ultrasound

  • Dario B. Rodrigues
  • Paul R. Stauffer
  • John Eisenbrey
  • Valeria Beckhoff
  • Mark D. Hurwitz
Part of the Cancer Treatment and Research book series (CTAR)


Focused ultrasound (FUS) is a noninvasive thermal therapy that utilizes energy generated from ultrasound waves to ablate a small target area. The ability of FUS to heat tumors to ablative temperatures in a very precise manner, thereby sparing surrounding tissues, has been equated to surgery with the advantages of reduced tissue trauma and recovery time. FUS may also be used to induce moderate temperature hyperthermia to enhance effects of radiation, chemotherapy, and potentially immunotherapy. The combination of magnetic resonance guidance with FUS (MRgFUS) provides the ability to plan, monitor, and steer treatments in near real-time, further contributing to the safety and effectiveness profile of FUS. Regulatory clearance for noninvasive palliative treatment of bone metastases has been realized. Additional palliative and curative treatments for a wide range of oncologic conditions including prostate, breast, gynecologic, gastrointestinal and brain cancers, and soft tissue tumors are in active development. This chapter provides an overview of MRgFUS including biological effects and physical parameters description. A comprehensive review of all currently approved and evolving oncological applications of MRgFUS then follows. Finally, an overview is provided of wide ranging leading edge research helping to define future applications for the field including the role of MRgFUS in multimodality cancer therapy.


Focused ultrasound MR guidance Thermal ablation Bone metastases Prostate cancer Breast cancer Soft tissue sarcoma Brain cancer Liver cancer Pancreatic cancer Colorectal cancer 



Adverse events


Arteriovenous malformation


Blood brain barrier


Brief pain inventory


Brief pain inventory-Quality of life


European conformity


Complete response


Computed tomography


Dynamic contrast-enhanced magnetic resonance imaging


Deoxyribonucleic acid


Endorectal cooling device


Food and drug administration


Focused ultrasound


Hepatocellular carcinoma


High-intensity focused ultrasound


International bone metastasis consensus working party


International index of erectile function


International prostate symptom score


MD Anderson criteria


Magnetic resonance


Magnetic resonance guided focused ultrasound


Magnetic resonance high-intensity focused ultrasound


MR thermometry


Non-perfused volume


No response


Numerical rating scale


Changes in analgesic intake


Overall response


Progressive disease


Pain progression


Partial response


Prostate specific antigen


European Organization for Research and Treatment of Cancer—Quality of life questionnaire for patients with bone metastases


Quality of life


Radio frequency




Ultrasound applicator


Ultrasound guided focused ultrasound


Visual analog scale


  1. Ahmed S, Johnson K, Ahmed O, Iqbal N (2014) Advances in the management of colorectal cancer: from biology to treatment. Int J Colorectal Dis 29(9):1031–1042. doi: 10.1007/s00384-014-1928-5 PubMedCrossRefGoogle Scholar
  2. Al-Dosari MS, Gao X (2009) Nonviral gene delivery: principle, limitations, and recent progress. AAPS J 11(4):671–681. doi: 10.1208/s12248-009-9143-y PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anzidei M, Napoli A, Sandolo F, Marincola BC, Di Martino M, Berloco P, Bosco S, Bezzi M, Catalano C (2014a) Magnetic resonance-guided focused ultrasound ablation in abdominal moving organs: a feasibility study in selected cases of pancreatic and liver cancer. Cardiovasc Intervent Radiol 37(6):1611–1617. doi: 10.1007/s00270-014-0861-x PubMedCrossRefGoogle Scholar
  4. Anzidei M, Marincola BC, Bezzi M, Brachetti G, Nudo F, Cortesi E, Berloco P, Catalano C, Napoli A (2014b) Magnetic resonance-guided high-intensity focused ultrasound treatment of locally advanced pancreatic adenocarcinoma: preliminary experience for pain palliation and local tumor control. Invest Radiol 49(12):759–765. doi: 10.1097/RLI.0000000000000080 PubMedCrossRefGoogle Scholar
  5. Aubry JF, Tanter M, Pernot M, Thomas JL, Fink M (2003) Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am 113(1):84–93. doi: 10.1121/1.1529663 PubMedCrossRefGoogle Scholar
  6. Avedian RS, Gold G, Ghanouni P, Pauly KB (2011) Magnetic resonance guided high-intensity focused ultrasound ablation of musculoskeletal tumors. Curr Orthop Pract 22(4):303–308. doi: 10.1097/BCO.0b013e318220dad5 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bazzocchi A, Facchini G, Spinnato P, Donatiello S, Diano D, Rimondi E, Battaglia M, Albisinni U (2015) Palliation of painful bone metastases: the “Rizzoli” experience. In: Annual congress of the European society of musculoskeletal radiology, York, UK, 18–20 June 2015. pp P-0136. doi: 10.1594/essr2015/P-0136
  8. Bekeredjian R, Grayburn PA, Shohet RV (2005) Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol 45(3):329–335. doi: 10.1016/j.jacc.2004.08.067 PubMedCrossRefGoogle Scholar
  9. Berenson JR, Rajdev L, Broder M (2006) Cancer biology and therapy. J Am Coll Radiol 5(9):1078–1081. doi: 10.4161/cbt.5.9.3306 Google Scholar
  10. Carson AR, McTiernan CF, Lavery L, Hodnick A, Grata M, Leng XP, Wang JJ, Chen XC, Modzelewski RA, Villanueva FS (2011) Gene therapy of carcinoma using ultrasound-targeted microbubble destruction. Ultrasound Med Biol 37(3):393–402. doi: 10.1016/j.ultrasmedbio.2010.11.011 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Catane R, Beck A, Inbar Y, Rabin T, Shabshin N, Hengst S, Pfeffer RM, Hanannel A, Dogadkin O, Liberman B, Kopelman D (2007) MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases - preliminary clinical experience. Ann Oncol 18(1):163–167. doi: 10.1093/annonc/mdl335 PubMedCrossRefGoogle Scholar
  12. Chan AC, Cheung TT, Fan ST, Chok KS, Chan SC, Poon RT, Lo CM (2013) Survival analysis of high-intensity focused ultrasound therapy versus radiofrequency ablation in the treatment of recurrent hepatocellular carcinoma. Ann Surg 257(4):686–692. doi: 10.1097/SLA.0b013e3182822c02 PubMedCrossRefGoogle Scholar
  13. Chen ZY, Lin Y, Yang F, Jiang L, Ge S (2013) Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles. Cardiovasc Ultrasound 11:11. doi: 10.1186/1476-7120-11-11 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chin JL, Billia M, Relle J, Roethke MC, Popeneciu IV, Kuru TH, Hatiboglu G, Mueller-Wolf MB, Motsch J, Romagnoli C, Kassam Z, Harle CC, Hafron J, Nandalur KR, Chronik BA, Burtnyk M, Schlemmer HP, Pahernik S (2016) Magnetic resonance imaging-guided transurethral ultrasound ablation of prostate tissue in patients with localized prostate cancer: a prospective phase 1 clinical trial. Eur Urol S0302-2838 (15):01238-01235. doi: 10.1016/j.eururo.2015.12.029
  15. Chopra R, Colquhoun A, Burtnyk M, N’Djin WA, Kobelevskiy I, Boyes A, Siddiqui K, Foster H, Sugar L, Haider MA, Bronskill M, Klotz L (2012) MR imaging-controlled transurethral ultrasound therapy for conformal treatment of prostate tissue: initial feasibility in humans. Radiology 265(1):303–313. doi: 10.1148/radiol.12112263 PubMedCrossRefGoogle Scholar
  16. Chow E, Hird A, Velikova G, Johnson C, Dewolf L, Bezjak A, Wu J, Shafiq J, Sezer O, Kardamakis D, van der Linden Y, Ma B, Castro M, Foro Arnalot P, Ahmedzai S, Clemons M, Hoskin P, Yee A, Brundaye M, Bottomley A, Grp EQL (2009) The European organisation for research and treatment of cancer quality of life questionnaire for patients with bone metastases: the EORTC QLQ-BM22. Eur J Cancer 45(7):1146–1152. doi: 10.1016/j.ejca.2008.11.013 PubMedCrossRefGoogle Scholar
  17. Chu W, Staruch R, Pichardo S, Huang Y, Mougenot C, Tillander M, Köhler M, Ylihautala M, McGuffin M, Czarnota G, Hynynen K (2016) MR-HIFU mild hyperthermia for locally recurrent rectal cancer: temperature mapping and heating quality in first patient. In: 12th International congress of hyperthermic oncology (ICHO 2016), New Orleans, LA, 11–15 April 2016, p 144Google Scholar
  18. Clark NA, Mumford SL, Segars JH (2014) Reproductive impact of MRI-guided focused ultrasound surgery for fibroids: a systematic review of the evidence. Curr Opin Obstet Gynecol 26(3):151–161. doi: 10.1097/GCO.0000000000000070 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cleeland CS, Ryan KM (1994) Pain assessment: global use of the brief pain inventory. Ann Acad Med Singapore 23(2):129–138PubMedGoogle Scholar
  20. Clement GT, Hynynen K (2002) A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol 47(8):1219–1236. doi: 10.1088/0031-9155/47/8/301 PubMedCrossRefGoogle Scholar
  21. Clement GT, Sun J, Giesecke T, Hynynen K (2000) A hemisphere array for non-invasive ultrasound brain therapy and surgery. Phys Med Biol 45(12):3707–3719. doi: 10.1088/0031-9155/45/12/314 PubMedCrossRefGoogle Scholar
  22. Cochran MC, Eisenbrey JR, Soulen MC, Schultz SM, Ouma RO, White SB, Furth EE, Wheatley MA (2011) Disposition of ultrasound sensitive polymeric drug carrier in a rat hepatocellular carcinoma model. Acad Radiol 18(11):1341–1348. doi: 10.1016/j.acra.2011.06.013 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Coluccia D, Fandino J, Schwyzer L, O’Gorman R, Remonda L, Anon J, Martin E, Werner B (2014) First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound. J Ther Ultrasound 2:17. doi: 10.1186/2050-5736-2-17 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Copelan A, Hartman J, Chehab M, Venkatesan AM (2015) High-Intensity focused ultrasound: current status for image-guided therapy. Semin Intervent Radiol 32(4):398–415. doi: 10.1055/s-0035-1564793 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Costelloe CM, Chuang HH, Madewell JE, Ueno NT (2010) Cancer response criteria and bone metastases: RECIST 1.1, MDA and PERCIST. J Cancer 1:80–92PubMedPubMedCentralCrossRefGoogle Scholar
  26. Courivaud F, Kazaryan AM, Lund A, Orszagh VC, Svindland A, Marangos IP, Halvorsen PS, Jebsen P, Fosse E, Hol PK, Edwin B (2014) Thermal fixation of swine liver tissue after magnetic resonance-guided high-intensity focused ultrasound ablation. Ultrasound Med Biol 40(7):1564–1577. doi: 10.1016/j.ultrasmedbio.2014.02.007 PubMedCrossRefGoogle Scholar
  27. Dahl O (1995) Interaction of heat and drugs in vitro and in vivo. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy: volume 1, biology, physiology and physics. Springer-Verlag, Berlin, pp 103–121CrossRefGoogle Scholar
  28. De Haas-Kock DFM, Buijsen J, Pijls-Johannesma M, Lutgens L, Lammering G, van Mastrigt GAPG, De Ruysscher DKM, Lambin P, van der Zee J (2009) Concomitant hyperthermia and radiation therapy for treating locally advanced rectal cancer. Cochrane Database Syst Rev (3):CD006269. doi: 10.1002/14651858.CD006269.pub2
  29. De Smet M, Hijnen NM, Langereis S, Elevelt A, Heijman E, Dubois L, Lambin P, Grull H (2013) Magnetic resonance guided high-intensity focused ultrasound mediated hyperthermia improves the intratumoral distribution of temperature-sensitive liposomal doxorubicin. Invest Radiol 48(6):395–405. doi: 10.1097/RLI.0b013e3182806940 PubMedCrossRefGoogle Scholar
  30. Dewhirst MW, Vujaskovic Z, Jones E, Thrall D (2005) Re-setting the biologic rationale for thermal therapy. Int J Hyperthermia 21(8):779–790. doi: 10.1080/02656730500271668 PubMedCrossRefGoogle Scholar
  31. Dewhirst MW, Das SK, Stauffer PR, Craciunescu OA, Vujaskovic Z, Thrall D (2012) Hyperthermia. In: Gunderson LL, Tepper JE (eds) Clinical radiation oncology, 3rd edn. Elsevier, Philladelphia, pp 385–403CrossRefGoogle Scholar
  32. Diaz RJ, McVeigh PZ, O’Reilly MA, Burrell K, Bebenek M, Smith C, Etame AB, Zadeh G, Hynynen K, Wilson BC, Rutka JT (2014) Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: potential for targeting experimental brain tumors. Nanomedicine 10(5):1075–1087. doi: 10.1016/j.nano.2013.12.006 PubMedCrossRefGoogle Scholar
  33. Dick EA, Gedroyc WM (2010) ExAblate magnetic resonance-guided focused ultrasound system in multiple body applications. Expert Rev Med Devices 7(5):589–597. doi: 10.1586/erd.10.38 PubMedCrossRefGoogle Scholar
  34. Diederich CJ, Hynynen K (1999) Ultrasound technology for hyperthermia. Ultrasound Med Biol 25(6):871–887. doi: 10.1016/S0301-5629(99)00048-4 PubMedCrossRefGoogle Scholar
  35. Eisenbrey JR, Burstein OM, Kambhampati R, Forsberg F, Liu JB, Wheatley MA (2010) Development and optimization of a doxorubicin loaded poly(lactic acid) contrast agent for ultrasound directed drug delivery. J Control Release 143(1):38–44. doi: 10.1016/j.jconrel.2009.12.021 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Eisenbrey JR, Albala L, Kramer MR, Daroshefski N, Brown D, Liu JB, Stanczak M, O’Kane P, Forsberg F, Wheatley MA (2015) Development of an ultrasound sensitive oxygen carrier for oxygen delivery to hypoxic tissue. Int J Pharm 478(1):361–367. doi: 10.1016/j.ijpharm.2014.11.023 PubMedCrossRefGoogle Scholar
  37. Escoffre JM, Novell A, de Smet M, Bouakaz A (2013) Focused ultrasound mediated drug delivery from temperature-sensitive liposomes: in-vitro characterization and validation. Phys Med Biol 58(22):8135–8151. doi: 10.1088/0031-9155/58/22/8135 PubMedCrossRefGoogle Scholar
  38. Ewertsen C, Saftoiu A, Gruionu LG, Karstrup S, Nielsen MB (2013) Real-time image fusion involving diagnostic ultrasound. AJR Am J Roentgenol 200(3):W249–W255. doi: 10.2214/AJR.12.8904 PubMedCrossRefGoogle Scholar
  39. Farny CH, Holt RG, Roy RA (2010) The correlation between bubble-enhanced HIFU heating and cavitation power. IEEE Trans Biomed Eng 57(1):175–184. doi: 10.1109/Tbme.2009.2028133 PubMedCrossRefGoogle Scholar
  40. Foley J, Kassell N, LeBlang S, Weber P, Snell JEM, Paeng DK (2015) Moore D workshop summary. In: Focused ultrasound for glioblastoma workshop, Charlottesville, VA, 9–10 Nov 2015. Focused Ultrasound Foundation, pp 4–6Google Scholar
  41. Furusawa H, Namba K, Thomsen S, Akiyama F, Bendet A, Tanaka C, Yasuda Y, Nakahara H (2006) Magnetic resonance-guided focused ultrasound surgery of breast cancer: reliability and effectiveness. J Am Coll Surg 203(1):54–63. doi: 10.1016/j.jamcollsurg.2006.04.002 PubMedCrossRefGoogle Scholar
  42. Furusawa H, Namba K, Nakahara H, Tanaka C, Yasuda Y, Hirabara E, Imahariyama M, Komaki K (2007) The evolving non-surgical ablation of breast cancer: MR guided focused ultrasound (MRgFUS). Breast Cancer 14(1):55–58. doi: 10.2325/jbcs.14.55 PubMedCrossRefGoogle Scholar
  43. Furusawa H, Shidooka J, Inomata M, Hirabara E, Nakahara H, Ymaguchi Y (2015) MRgFUS of small breast cancer: what should be learned from a case of local recurrence. J Ther Ultrasound 3(Suppl 1):O75–O75. doi: 10.1186/2050-5736-3-S1-O75 PubMedCentralCrossRefGoogle Scholar
  44. Ghai S, Louis AS, Van Vliet M, Lindner U, Haider MA, Hlasny E, Spensieri P, Van Der Kwast TH, McCluskey SA, Kucharczyk W, Trachtenberg J (2015) Real-time MRI-guided focused ultrasound for focal therapy of locally confined low-risk prostate cancer: feasibility and preliminary outcomes. AJR Am J Roentgenol 205(2):W177–W184. doi: 10.2214/AJR.14.13098 PubMedCrossRefGoogle Scholar
  45. Ghanouni P, Pauly KB, Bitton R, Avedian R, Bucknor M, Gold G (2015) MR guided focused ultrasound treatment of soft tissue tumors of the extremities—preliminary experience. J Ther Ultrasound 3(Suppl 1):O69–O69. doi: 10.1186/2050-5736-3-S1-O69 PubMedCentralCrossRefGoogle Scholar
  46. Ghanouni P, Dobrotwir A, Bazzocchi A, Bucknor M, Bitton R, Rosenberg J, Telischak K, Busacca M, Ferrari S, Albisinni U, Walters S, Gold G, Ganjoo K, Napoli A, Pauly KB, Avedian R (2016) Magnetic resonance-guided focused ultrasound treatment of extra-abdominal desmoid tumors: a retrospective multicenter study. Eur Radiol In press. doi: 10.1007/s00330-016-4376-5 Google Scholar
  47. Gianfelice D, Khiat A, Amara M, Belblidia A, Boulanger Y (2003a) MR imaging-guided focused US ablation of breast cancer: histopathologic assessment of effectiveness—initial experience. Radiology 227(3):849–855. doi: 10.1148/radiol.2281012163 PubMedCrossRefGoogle Scholar
  48. Gianfelice D, Khiat A, Amara M, Belblidia A, Boulanger Y (2003b) MR imaging-guided focused ultrasound surgery of breast cancer: correlation of dynamic contrast-enhanced MRI with histopathologic findings. Breast Cancer Res Treat 82(2):93–101. doi: 10.1023/B:BREA.0000003956.11376.5b PubMedCrossRefGoogle Scholar
  49. Gianfelice D, Khiat A, Boulanger Y, Amara M, Belblidia A (2003c) Feasibility of magnetic resonance imaging-guided focused ultrasound surgery as an adjunct to tamoxifen therapy in high-risk surgical patients with breast carcinoma. J Vasc Interv Radiol 14(10):1275–1282. doi: 10.1097/01.RVL.0000092900.73329.A2 PubMedCrossRefGoogle Scholar
  50. Gianfelice D, Gupta C, Kucharczyk W, Bret P, Havill D, Clemons M (2008) Palliative treatment of painful bone metastases with MR imaging-guided focused ultrasound. Radiology 249(1):355–363. doi: 10.1148/radiol.2491071523 PubMedCrossRefGoogle Scholar
  51. Goertz DE (2015) An overview of the influence of therapeutic ultrasound exposures on the vasculature: high intensity ultrasound and microbubble-mediated bioeffects. Int J Hyperth 31(2):134–144. doi: 10.3109/02656736.2015.1009179 CrossRefGoogle Scholar
  52. Gu J, Wang H, Tang N, Hua Y, Yang H, Qiu Y, Ge R, Zhou Y, Wang W, Zhang G (2015) Magnetic resonance guided focused ultrasound surgery for pain palliation of bone metastases: early experience of clinical application in China. Zhonghua Yi Xue Za Zhi 95(41):3328–3332PubMedGoogle Scholar
  53. Hahn GM (1979) Potential for therapy of drugs and hyperthermia. Cancer Res 39:2264–2268PubMedGoogle Scholar
  54. Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist, 6th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  55. Hectors SJ, Jacobs I, Moonen CT, Strijkers GJ, Nicolay K (2016) MRI methods for the evaluation of high intensity focused ultrasound tumor treatment: current status and future needs. Magn Reson Med 75(1):302–317. doi: 10.1002/mrm.25758 PubMedCrossRefGoogle Scholar
  56. Holbrook AB, Ghanouni P, Santos JM, Dumoulin C, Medan Y, Pauly KB (2014) Respiration based steering for high intensity focused ultrasound liver ablation. Magn Reson Med 71(2):797–806. doi: 10.1002/mrm.24695 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Huber PE, Jenne JW, Rastert R, Simiantonakis I, Sinn HP, Strittmatter HJ, von Fournier D, Wannenmacher MF, Debus J (2001) A new noninvasive approach in breast cancer therapy using magnetic resonance imaging-guided focused ultrasound surgery. Cancer Res 61(23):8441–8447PubMedGoogle Scholar
  58. Huisman M, Lam MK, Bartels LW, Nijenhuis RJ, Moonen CT, Knuttel FM, Verkooijen HM, van Vulpen M, van den Bosch MA (2014) Feasibility of volumetric MRI-guided high intensity focused ultrasound (MR-HIFU) for painful bone metastases. J Ther Ultrasound 2:16. doi: 10.1186/2050-5736-2-16 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hurwitz M, Stauffer P (2014) Hyperthermia, radiation and chemotherapy: the role of heat in multidisciplinary cancer care. Semin Oncol 41(6):714–729. doi: 10.1053/j.seminoncol.2014.09.014 PubMedCrossRefGoogle Scholar
  60. Hurwitz MD, Ghanouni P, Kanaev SV, Iozeffi D, Gianfelice D, Fennessy FM, Kuten A, Meyer JE, LeBlang SD, Roberts A, Choi J, Larner JM, Napoli A, Turkevich VG, Inbar Y, Tempany CM, Pfeffer RM (2014) Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results. J Natl Cancer Inst 106 (5). doi: 10.1093/jnci/dju082
  61. Hynynen K (1990) Biophysics and technology of ultrasound hyperthermia. In: Gautherie M (ed) Methods of external hyperthermia heating. Clinical thermology, subseries thermotherapy. Springer, Berlin, Heidelberg, pp 61–115Google Scholar
  62. Hynynen K (2010) MRI-guided focused ultrasound treatments. Ultra 50(2):221–229. doi: 10.1016/j.ultras.2009.08.015 CrossRefGoogle Scholar
  63. Hynynen K, Jolesz FA (1998) Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol 24(2):275–283. doi: 10.1016/S0301-5629(97)00269-X PubMedCrossRefGoogle Scholar
  64. Hynynen K, McDannold N (2004) MRI guided and monitored focused ultrasound thermal ablation methods: a review of progress. Int J Hyperthermia 20(7):725–737. doi: 10.1080/02656730410001716597 PubMedCrossRefGoogle Scholar
  65. Hynynen K, McDannold N, Mulkern RV, Jolesz FA (2000) Temperature monitoring in fat with MRI. Magn Reson Med 43(6):901–904. doi: 10.1002/1522-2594(200006)43:6<901:AID-MRM18>3.0.CO;2-A PubMedCrossRefGoogle Scholar
  66. Illing RO, Kennedy JE, Wu F, ter Haar GR, Protheroe AS, Friend PJ, Gleeson FV, Cranston DW, Phillips RR, Middleton MR (2005) The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br J Cancer 93(8):890–895. doi: 10.1038/sj.bjc.6602803 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34(6):814–823. doi: 10.1002/mrm.1910340606 PubMedCrossRefGoogle Scholar
  68. Joo B, Park MS, Lee SH, Choi HJ, Lim ST, Rha SY, Rachmilevitch I, Lee YH, Suh JS (2015) Pain palliation in patients with bone metastases using magnetic resonance-guided focused ultrasound with conformal bone system: a preliminary report. Yonsei Med J 56(2):503–509. doi: 10.3349/ymj.2015.56.2.503 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Jun-Qun Z, Guo-Min W, Bo Y, Gong-Xian W, Shen-Xu H (2004) Short-term results of 89 cases of rectal carcinoma treated with high-intensity focused ultrasound and low-dose radiotherapy. Ultrasound Med Biol 30(1):57–60. doi: 10.1016/j.ultrasmedbio.2003.08.014 PubMedCrossRefGoogle Scholar
  70. Kang TW, Rhim H (2015) Recent advances in tumor ablation for hepatocellular carcinoma. Liver Cancer 4(3):176–187. doi: 10.1159/000367740 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Karakitsios I, Mihcin S, Saliev T, Melzer A (2016) Feasibility study of pre-clinical thiel embalmed human cadaver for MR-guided focused ultrasound of the spine. Minim Invasive Ther Allied Technol 25(3):154–161. doi: 10.3109/13645706.2016.1150297 PubMedCrossRefGoogle Scholar
  72. Khiat A, Gianfelice D, Amara M, Boulanger Y (2006) Influence of post-treatment delay on the evaluation of the response to focused ultrasound surgery of breast cancer by dynamic contrast enhanced MRI. Br J Radiol 79(940):308–314. doi: 10.1259/bjr/23046051 PubMedCrossRefGoogle Scholar
  73. Kim YS (2015) Advances in MR image-guided high-intensity focused ultrasound therapy. Int J Hyperth 31(3):225–232. doi: 10.3109/02656736.2014.976773 CrossRefGoogle Scholar
  74. Kobus T, McDannold N (2015) Update on clinical magnetic resonance-guided focused ultrasound applications. Magn Reson Imaging Clin N Am 23(4):657–667. doi: 10.1016/j.mric.2015.05.013 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kong G, Anyarambhatla G, Petros WP, Braun RD, Colvin OM, Needham D, Dewhirst MW (2000) Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res 60(24):6950–6957PubMedGoogle Scholar
  76. Kopechek JA, Park EJ, Zhang YZ, Vykhodtseva NI, McDannold NJ, Porter TM (2014) Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions. Phys Med Biol 59(13):3465–3481. doi: 10.1088/0031-9155/59/13/3465 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kopelman D, Inbar Y, Hanannel A, Freundlich D, Castel D, Perel A, Greenfeld A, Salamon T, Sareli M, Valeanu A, Papa M (2006) Magnetic resonance-guided focused ultrasound surgery (MRgFUS): ablation of liver tissue in a porcine model. Eur J Radiol 59(2):157–162. doi: 10.1016/j.ejrad.2006.04.008 PubMedCrossRefGoogle Scholar
  78. Laetsch T, Staruch R, Koral K, Chopra R (2016) Prospective imaging study of magnetic resonance thermometry quality in pediatric solid tumors. In: 12th international congress of hyperthermic oncology (ICHO 2016), New Orleans, LA, 11–15 April 2016, p 144Google Scholar
  79. Lee ER (1995) Electromagnetic superficial heating technology. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy, vol 1, chapter 10. Springer, Berlin, Heidelberg, pp 193–217Google Scholar
  80. Lee MW, Kim YJ, Park HS, Yu NC, Jung SI, Ko SY, Jeon HJ (2010) Targeted sonography for small hepatocellular carcinoma discovered by CT or MRI: factors affecting sonographic detection. AJR Am J Roentgenol 194(5):W396–W400. doi: 10.2214/AJR.09.3171 PubMedCrossRefGoogle Scholar
  81. Lee J, Farha G, Poon I, Karam I, Higgins K, Pichardo S, Hynynen K, Enepekides D (2016) Magnetic resonance-guided high-intensity focused ultrasound combined with radiotherapy for palliation of head and neck cancer-a pilot study. J Ther Ultrasound 4:12. doi: 10.1186/s40349-016-0055-x PubMedPubMedCentralCrossRefGoogle Scholar
  82. Leslie TA, Kennedy JE, Illing RO, Ter Haar GR, Wu F, Phillips RR, Friend PJ, Roberts IS, Cranston DW, Middleton MR (2008) High-intensity focused ultrasound ablation of liver tumours: can radiological assessment predict the histological response? Br J Radiol 81(967):564–571. doi: 10.1259/bjr/27118953 PubMedCrossRefGoogle Scholar
  83. Lesser TG, Schubert H, Gullmar D, Reichenbach JR, Wolfram F (2016) One-lung flooding reduces the ipsilateral diaphragm motion during mechanical ventilation. Eur J Med Res 21(1):9. doi: 10.1186/s40001-016-0205-1 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Liberman B, Gianfelice D, Inbar Y, Beck A, Rabin T, Shabshin N, Chander G, Hengst S, Pfeffer R, Chechick A, Hanannel A, Dogadkin O, Catane R (2009) Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol 16(1):140–146. doi: 10.1245/s10434-008-0011-2 PubMedCrossRefGoogle Scholar
  85. Lin SM (2009) Recent advances in radiofrequency ablation in the treatment of hepatocellular carcinoma and metastatic liver cancers. Chang Gung Med J 32(1):22–32PubMedGoogle Scholar
  86. Lindner U, Ghai S, Spensieri P, Hlasny E, Van Der Kwast TH, McCluskey SA, Haider MA, Kucharczyk W, Trachtenberg J (2012) Focal magnetic resonance guided focused ultrasound for prostate cancer: initial North American experience. Can Urol Assoc J 6(6):E283–E286. doi: 10.5489/cuaj.12218 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lipsman N, Mainprize TG, Schwartz ML, Hynynen K, Lozano AM (2014) Intracranial applications of magnetic resonance-guided focused ultrasound. Neurother: J Am Soc Exp NeuroTher 11(3):593–605. doi: 10.1007/s13311-014-0281-2 CrossRefGoogle Scholar
  88. Liu HL, Yang HW, Hua MY, Wei KC (2012) Enhanced therapeutic agent delivery through magnetic resonance imaging-monitored focused ultrasound blood-brain barrier disruption for brain tumor treatment: an overview of the current preclinical status. Neurosurg Focus 32(1). doi: 10.3171/2011.10.Focus11238
  89. Machtinger R, Inbar Y, Ben-Baruch G, Korach J, Rabinovici J (2008) MRgFUS for pain relief as palliative treatment in recurrent cervical carcinoma: a case report. Gynecol Oncol 108(1):241–243. doi: 10.1016/j.ygyno.2007.08.079 PubMedCrossRefGoogle Scholar
  90. Marquet F, Tung YS, Teichert T, Ferrera VP, Konofagou EE (2011) Noninvasive, transient and selective blood-brain barrier opening in non-human primates in vivo. PLoS ONE 6(7):e22598. doi: 10.1371/journal.pone.0022598 PubMedPubMedCentralCrossRefGoogle Scholar
  91. McDannold NJ, Jolesz FA (2000) Magnetic resonance image-guided thermal ablations. Top Magn Reson Imaging 11(3):191–202. doi: 10.1097/00002142-200006000-00005 PubMedCrossRefGoogle Scholar
  92. McDannold N, Clement GT, Black P, Jolesz F, Hynynen K (2010) Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery 66(2):323–332; discussion 332. doi: 10.1227/01.NEU.0000360379.95800.2F
  93. Melodelima D, Salomir R, Chapelon JY, Theillere Y, Moonen C, Cathignol D (2005) Intraluminal high intensity ultrasound treatment in the esophagus under fast MR temperature mapping: in vivo studies. Magn Reson Med 54(4):975–982. doi: 10.1002/mrm.20638 PubMedCrossRefGoogle Scholar
  94. Merckel LG, Knuttel FM, Deckers R, van Dalen T, Schubert G, Peters NH, Weits T, van Diest PJ, Mali WP, Vaessen PH, van Gorp JM, Moonen CT, Bartels LW, van den Bosch MA (2016) First clinical experience with a dedicated MRI-guided high-intensity focused ultrasound system for breast cancer ablation. Eur Radiol In Press. doi: 10.1007/s00330-016-4222-9 Google Scholar
  95. Meyer J, Pfeffer R, Kanaev S, Iozeffi D, Gianfelice D, Ghanouni P, Militianu D, Hurwitz M (2014) MR-guided focused ultrasound for painful bone metastases: safety when combined with chemotherapy. In: 4th International focused ultrasound symposium, Bethesda, 12–16 Oct 2014. pp 50–BMGoogle Scholar
  96. Monzon L, Wasan H, Leen E, Ahmed H, Dawson PM, Harvey C, Muhamed A, Hand J, Price P, Abel PD (2011) Transrectal high-intensity focused ultrasonography is feasible as a new therapeutic option for advanced recurrent rectal cancer: report on the first case worldwide. Ann R Coll Surg Engl 93(6):e119–e121. doi: 10.1308/147870811X592458 PubMedCrossRefGoogle Scholar
  97. Nance E, Timbie K, Miller GW, Song J, Louttit C, Klibanov AL, Shih TY, Swaminathan G, Tamargo RJ, Woodworth GF, Hanes J, Price RJ (2014) Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood—brain barrier using MRI-guided focused ultrasound. J Control Release 189:123–132. doi: 10.1016/j.jconrel.2014.06.031 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Napoli A, Anzidei M, Marincola BC, Brachetti G, Ciolina F, Cartocci G, Marsecano C, Zaccagna F, Marchetti L, Cortesi E, Catalano C (2013a) Primary pain palliation and local tumor control in bone metastases treated with magnetic resonance-guided focused ultrasound. Invest Radiol 48(6):351–358. doi: 10.1097/RLI.0b013e318285bbab PubMedCrossRefGoogle Scholar
  99. Napoli A, Anzidei M, Ciolina F, Marotta E, Cavallo Marincola B, Brachetti G, Di Mare L, Cartocci G, Boni F, Noce V, Bertaccini L, Catalano C (2013b) MR-guided high-intensity focused ultrasound: current status of an emerging technology. Cardiovasc Intervent Radiol 36(5):1190–1203. doi: 10.1007/s00270-013-0592-4 PubMedCrossRefGoogle Scholar
  100. Napoli A, Anzidei M, De Nunzio C, Cartocci G, Panebianco V, De Dominicis C, Catalano C, Petrucci F, Leonardo C (2013c) Real-time magnetic resonance-guided high-intensity focused ultrasound focal therapy for localised prostate cancer: preliminary experience. Eur Urol 63(2):395–398. doi: 10.1016/j.eururo.2012.11.002 PubMedCrossRefGoogle Scholar
  101. Ng KK, Poon RT, Chan SC, Chok KS, Cheung TT, Tung H, Chu F, Tso WK, Yu WC, Lo CM, Fan ST (2011) High-intensity focused ultrasound for hepatocellular carcinoma: a single-center experience. Ann Surg 253(5):981–987. doi: 10.1097/SLA.0b013e3182128a8b PubMedCrossRefGoogle Scholar
  102. Odeen H, de Bever J, Almquist S, Farrer A, Todd N, Payne A, Snell JW, Christensen DA, Parker DL (2014) Treatment envelope evaluation in transcranial magnetic resonance-guided focused ultrasound utilizing 3D MR thermometry. J Ther Ultrasound 2:19. doi: 10.1186/2050-5736-2-19 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Okada A, Murakami T, Mikami K, Onishi H, Tanigawa N, Marukawa T, Nakamura H (2006) A case of hepatocellular carcinoma treated by MR-guided focused ultrasound ablation with respiratory gating. Magn Reson Med Sci 5(3):167–171. doi: 10.2463/mrms.5.167 PubMedCrossRefGoogle Scholar
  104. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1):3–14. doi: 10.1602/neurorx.2.1.3 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Park MJ, Kim YS, Yang J, Sun WC, Park H, Chae SY, Namgung MS, Choi KS (2013) Pulsed high-intensity focused ultrasound therapy enhances targeted delivery of cetuximab to colon cancer xenograft model in mice. Ultrasound Med Biol 39(2):292–299. doi: 10.1016/j.ultrasmedbio.2012.10.008 PubMedCrossRefGoogle Scholar
  106. Pernot M, Aubry JF, Tanter M, Thomas JL, Fink M (2003) High power transcranial beam steering for ultrasonic brain therapy. Phys Med Biol 48(16):2577–2589. doi: 10.1088/0031-9155/48/16/301 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Petrusca L, Cattin P, De Luca V, Preiswerk F, Celicanin Z, Auboiroux V, Viallon M, Arnold P, Santini F, Terraz S, Scheffler K, Becker CD, Salomir R (2013) Hybrid ultrasound/magnetic resonance simultaneous acquisition and image fusion for motion monitoring in the upper abdomen. Invest Radiol 48(5):333–340. doi: 10.1097/RLI.0b013e31828236c3 PubMedCrossRefGoogle Scholar
  108. Ponce AM, Vujaskovic Z, Yuan F, Needham D, Dewhirst MW (2006) Hyperthermia mediated liposomal drug delivery. Int J Hyperth 22(3):205–213. doi: 10.1080/02656730600582956 CrossRefGoogle Scholar
  109. Quesson B, Merle M, Kohler MO, Mougenot C, Roujol S, de Senneville BD, Moonen CT (2010) A method for MRI guidance of intercostal high intensity focused ultrasound ablation in the liver. Med Phys 37(6):2533–2540. doi: 10.1118/1.3413996 PubMedCrossRefGoogle Scholar
  110. Quesson B, Laurent C, Maclair G, de Senneville BD, Mougenot C, Ries M, Carteret T, Rullier A, Moonen CT (2011) Real-time volumetric MRI thermometry of focused ultrasound ablation in vivo: a feasibility study in pig liver and kidney. NMR Biomed 24(2):145–153. doi: 10.1002/nbm.1563 PubMedCrossRefGoogle Scholar
  111. Ram Z, Cohen ZR, Harnof S, Tal S, Faibel M, Nass D, Maier SE, Hadani M, Mardor Y (2006) Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy. Neurosurgery 59(5):949–955; discussion 955–946. doi: 10.1227/01.NEU.0000254439.02736.D8
  112. Rapoport N, Payne A, Dillon C, Shea J, Scaife C, Gupta R (2013) Focused ultrasound-mediated drug delivery to pancreatic cancer in a mouse model. J Ther Ultrasound 1:11. doi: 10.1186/2050-5736-1-11 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Rodrigues DB, Stauffer PR, Vrba D, Hurwitz MD (2015) Focused ultrasound for treatment of bone tumours. Int J Hyperth 31(3):260–271. doi: 10.3109/02656736.2015.1006690 CrossRefGoogle Scholar
  114. Rosenthal D, Callstrom MR (2012) Critical review and state of the art in interventional oncology: benign and metastatic disease involving bone. Radiology 262(3):765–780. doi: 10.1148/radiol.11101384 PubMedCrossRefGoogle Scholar
  115. Saeed M, Krug R, Do L, Hetts SW, Wilson MW (2016) Renal ablation using magnetic resonance-guided high intensity focused ultrasound: Magnetic resonance imaging and histopathology assessment. World J Radiol 8(3):298–307. doi: 10.4329/wjr.v8.i3.298 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Sazgarnia A, Shanei A, Taheri AR, Meibodi NT, Eshghi H, Attaran N, Shanei MM (2013) Therapeutic effects of acoustic cavitation in the presence of gold nanoparticles on a colon tumor model. J Ultrasound Med 32(3):475–483PubMedCrossRefGoogle Scholar
  117. Schlesinger D, Benedict S, Diederich C, Gedroyc W, Klibanov A, Larner J (2013) MR-guided focused ultrasound surgery, present and future. Med Phys 40(8):080901. doi: 10.1118/1.4811136 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Siddiqui K, Chopra R, Vedula S, Sugar L, Haider M, Boyes A, Musquera M, Bronskill M, Klotz L (2010) MRI-guided transurethral ultrasound therapy of the prostate gland using real-time thermal mapping: initial studies. Urology 76(6):1506–1511. doi: 10.1016/j.urology.2010.04.046 PubMedCrossRefGoogle Scholar
  119. Sneed PK, Stauffer PR, Li G, Sun X, Myerson R (2010) Hyperthermia. In: Phillips T, Hoppe R, Roach M (eds) Textbook of radiation oncology, 3rd edn. Elsevier, Philadelphia, pp 1564–1593CrossRefGoogle Scholar
  120. Stauffer PR (2005) Evolving technology for thermal therapy of cancer. Int J Hyperth 21(8):731–744. doi: 10.1080/02656730500331868 CrossRefGoogle Scholar
  121. Sun J, Hynynen K (1998) Focusing of therapeutic ultrasound through a human skull: a numerical study. J Acoust Soc Am 104(3 Pt 1):1705–1715. doi: 10.1121/1.424383 PubMedCrossRefGoogle Scholar
  122. Sun J, Hynynen K (1999) The potential of transskull ultrasound therapy and surgery using the maximum available skull surface area. J Acoust Soc Am 105(4):2519–2527. doi: 10.1121/1.426863 PubMedCrossRefGoogle Scholar
  123. Teraphongphom N (2016) Theranostic nanoparticle and drug loaded contrast agents and their biomedical applications. PhD thesis, Drexel University, PhiladelphiaGoogle Scholar
  124. Teraphongphom N, Chhour P, Eisenbrey JR, Naha PC, Witschey WRT, Opasanont B, Jablonowski L, Cormode DP, Wheatley MA (2015) Nanoparticle loaded polymeric microbubbles as contrast agents for multimodal imaging. Langmuir 31(43):11858–11867. doi: 10.1021/acs.langmuir.5b03473 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Tokuda J, Morikawa S, Haque HA, Tsukamoto T, Matsumiya K, Liao H, Masamune K, Dohi T (2008) Adaptive 4D MR imaging using navigator-based respiratory signal for MRI-guided therapy. Magn Reson Med 59(5):1051–1061. doi: 10.1002/mrm.21436 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Toraya-Brown S, Fiering S (2014) Local tumour hyperthermia as immunotherapy for metastatic cancer. Int J Hyperth 30(8):531–539. doi: 10.3109/02656736.2014.968640
  127. Tung YS, Vlachos F, Feshitan JA, Borden MA, Konofagou EE (2011) The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice. J Acoust Soc Am 130(5):3059–3067. doi: 10.1121/1.3646905 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Van Rhoon GC (2013) External electromagnetic methods and devices. In: Moros EG (ed) Physics of thermal therapy: fundamentals and clincial applications. Taylor and Francis, Boca Ratan, pp 139–158Google Scholar
  129. Vidal-Jove J, Eres N, Perich E, Jaen A, del Castillo MA (2016) Interventional oncology: role of focused ultrasound (USgHIFU) in pancreatic cancer. Five years experience and tumor ablation considerations in the Western stage. In: 12th International congress of hyperthermic oncology (ICHO 2016), New Orleans, LA, 11–15 April 2016. p 210Google Scholar
  130. Vujaskovic Z, Poulson JM, Gaskin AA, Thrall DE, Page RL, Charles HC, MacFall JR, Brizel DM, Meyer RE, Prescott DM, Samulski TV, Dewhirst MW (2000) Temperature-dependent changes in physiologic parameters of spontaneous canine soft tissue sarcomas after combined radiotherapy and hyperthermia treatment. Int J Radiat Oncol Biol Phys 46(1):179–185. doi: 10.1016/S0360-3016(99)00362-4 PubMedCrossRefGoogle Scholar
  131. Weber-Adrian D, Thevenot E, O’Reilly MA, Oakden W, Akens MK, Ellens N, Markham-Coultes K, Burgess A, Finkelstein J, Yee AJM, Whyne CM, Foust KD, Kaspar BK, Stanisz GJ, Chopra R, Hynynen K, Aubert I (2015) Gene delivery to the spinal cord using MRI-guided focused ultrasound. Gene Ther 22(7):568–577. doi: 10.1038/gt.2015.25 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Wijlemans JW, de Greef M, Schubert G, Bartels LW, Moonen CT, van den Bosch MA, Ries M (2015) A clinically feasible treatment protocol for magnetic resonance-guided high-intensity focused ultrasound ablation in the liver. Invest Radiol 50(1):24–31. doi: 10.1097/RLI.0000000000000091 PubMedCrossRefGoogle Scholar
  133. Wolfram F, Boltze C, Schubert H, Bischoff S, Lesser TG (2014) Effect of lung flooding and high-intensity focused ultrasound on lung tumours: an experimental study in an ex vivo human cancer model and simulated in vivo tumours in pigs. Eur J Med Res 19:1. doi: 10.1186/2047-783X-19-1 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Woodrum DA, Kawashima A, Gorny KR, Mynderse LA (2015) Magnetic resonance-guided thermal therapy for localized and recurrent prostate cancer. Magn Reson Imaging Clin N Am 23(4):607–619. doi: 10.1016/j.mric.2015.05.014 PubMedCrossRefGoogle Scholar
  135. Wu F (2006) Extracorporeal high intensity focused ultrasound in the treatment of patients with solid malignancy. Minim Invasive Ther Allied Technol 15(1):26–35. doi: 10.1080/13645700500470124 PubMedCrossRefGoogle Scholar
  136. Wu F, Wang ZB, Chen WZ, Bai J, Zhu H, Qiao TY (2003) Preliminary experience using high intensity focused ultrasound for the treatment of patients with advanced stage renal malignancy. J Urol 170(6 Pt 1):2237–2240. doi: 10.1097/01.ju.0000097123.34790.70 PubMedCrossRefGoogle Scholar
  137. Wu F, Wang ZB, Chen WZ, Zhu H, Bai J, Zou JZ, Li KQ, Jin CB, Xie FL, Su HB (2004) Extracorporeal high intensity focused ultrasound ablation in the treatment of patients with large hepatocellular carcinoma. Ann Surg Oncol 11(12):1061–1069. doi: 10.1245/ASO.2004.02.026 PubMedCrossRefGoogle Scholar
  138. Xu Y, Choi J, Hylander B, Sen A, Evans SS, Kraybill WG, Repasky EA (2007) Fever-range whole body hyperthermia increases the number of perfused tumor blood vessels and therapeutic efficacy of liposomally encapsulated doxorubicin. Int J Hyperth 23(6):513–527. doi: 10.1080/02656730701666112 CrossRefGoogle Scholar
  139. Xu G, Luo G, He L, Li J, Shan H, Zhang R, Li Y, Gao X, Lin S, Wang G (2011) Follow-up of high-intensity focused ultrasound treatment for patients with hepatocellular carcinoma. Ultrasound Med Biol 37(12):1993–1999. doi: 10.1016/j.ultrasmedbio.2011.08.011 PubMedCrossRefGoogle Scholar
  140. Yuh B, Liu A, Beatty R, Jung A, Wong JY (2016) Focal therapy using magnetic resonance image-guided focused ultrasound in patients with localized prostate cancer. J Ther Ultrasound 4:8. doi: 10.1186/s40349-016-0054-y PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zaccagna F, Giulia B, Bazzocchi A, Spinnato P, Albisinni U, Napoli A, Catalano C (2014) Palliative treatment of painful bone metastases with MR imaging–guided focused ultrasound surgery: a two-centre study. In: 4th international focused ultrasound symposium, Bethesda, 12–16 Oct 2014. pp 51–BMGoogle Scholar
  142. Zachiu C, Papadakis N, Ries M, Moonen C, Denis de Senneville B (2015) An improved optical flow tracking technique for real-time MR-guided beam therapies in moving organs. Phys Med Biol 60(23):9003–9029. doi: 10.1088/0031-9155/60/23/9003 PubMedCrossRefGoogle Scholar
  143. Zagar TM, Vujaskovic Z, Formenti S, Rugo H, Muggia F, O’Connor B, Myerson R, Stauffer P, Hsu IC, Diederich C, Straube W, Boss MK, Boico A, Craciunescu O, Maccarini P, Needham D, Borys N, Blackwell KL, Dewhirst MW (2014) Two phase I dose-escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. Int J Hyperth 30(5):285–294. doi: 10.3109/02656736.2014.936049 CrossRefGoogle Scholar
  144. Zhou YF (2011) High intensity focused ultrasound in clinical tumor ablation. World J Clin Oncol 2(1):8–27. doi: 10.5306/wjco.v2.i1.8 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Zhu X, Guo J, He C, Geng H, Yu G, Li J, Zheng H, Ji X, Yan F (2016) Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles. Sci Rep 6:21683. doi: 10.1038/srep21683 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Zippel DB, Papa MZ (2005) The use of MR imaging guided focused ultrasound in breast cancer patients; a preliminary phase one study and review. Breast Cancer 12(1):32–38. doi: 10.2325/jbcs.12.32 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dario B. Rodrigues
    • 1
  • Paul R. Stauffer
    • 1
  • John Eisenbrey
    • 2
  • Valeria Beckhoff
    • 3
  • Mark D. Hurwitz
    • 1
  1. 1.Thermal Oncology Program, Department of Radiation OncologyThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Department of RadiologyThomas Jefferson UniversityPhiladelphiaUSA
  3. 3.Department of Biomedical EngineeringDrexel UniversityPhiladelphiaUSA

Personalised recommendations