Skip to main content

MRI Guided Radiotherapy

  • Chapter
  • First Online:
Book cover Advances in Radiation Oncology

Part of the book series: Cancer Treatment and Research ((CTAR))

Abstract

Magnetic Resonance Imaging (MRI) has been a part of radiation therapy for many years, but its role is expanding. MR provides soft tissue contrast that is superior to what can be obtained with computed tomography (CT), the modality used most often to support radiation therapy treatment simulation. There are a number of critical challenges to employing MR for simulation imaging, namely the reduced spatial fidelity, and the lack of a direct relationship between MR image values and electron density, a quantity needed for dose calculations, as well as a difference between MR image values and the attenuation of kV X-rays, used to aid in patient positioning. These challenges are being met by clinics and companies, to the extent that the exclusive use of MR for simulation is now possible in a number of treatment sites. While MR has been used for simulation, it has only recently been introduced into the treatment room. Integrating MR with patient positioning and monitoring before and during treatment, respectively, would potentially improve radiation therapy treatment accuracy, enabling tighter uncertainty margins and ultimately improving outcomes. The challenges of integrating a MRI system with radiation treatment delivery have been recently met by radiation therapy equipment manufacturers, providing the radiation oncology community with an opportunity to deliver radiation doses with unparalleled accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chen LL, Price RA, Wang L, Li JS, Qin LH, McNeeley S, Ma CMC, Freedman GM, Pollack A (2004a) MRI-based treatment planning for radiotherapy: dosimetric verification for prostate IMRT. Int J Radiat Oncol Biol Phys 60:636–647

    Article  PubMed  Google Scholar 

  • Chen L, Price RA, Nguyen TB, Wang L, Li JS, Qin L, Ding M, Palacio E, Ma CM, Pollack A (2004b) Dosimetric evaluation of MRI-based treatment planning for prostate cancer. Phys Med Biol 49:5157–5170

    Article  CAS  PubMed  Google Scholar 

  • Devic S (2012) MRI simulation for radiotherapy treatment planning. Med Phys 39:6701–6711

    Article  PubMed  Google Scholar 

  • Eilertsen K, Vestad LNTA, Geier O, Skretting A (2008) A simulation of MRI based dose calculations on the basis of radiotherapy planning CT images. Acta Oncol 47:1294–1302

    Article  PubMed  Google Scholar 

  • Fallone BG, Murray B, Rathee S, Stanescu T, Steciw S, Vidakovic S, Blosser E, Tymofichuk D (2009) First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys 36:2084–2088

    Article  CAS  PubMed  Google Scholar 

  • Huan Y, Caldwell C, Balogh J, Mah K (2014) Toward magnetic resonance-only simulation: segmentation of bone in MR for radiation therapy verification of the head. Int J Radiat Oncol Biol Phys 89:649–657

    Article  Google Scholar 

  • Jaffray DA, Drake DG, Moreau M, Martinez AA, Wong JW (1999) A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. Int J Radiat Oncol Biol Phys 45:773–789

    Article  CAS  PubMed  Google Scholar 

  • Jonsson JH, Karlsson MG, Karlsson M, Nyholm T (2010) Treatment planning using MRI data: an analysis of the dose calculation accuracy for different treatment regions. Radiat Oncol 5:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapanen M, Collan J, Beule A, Seppala T, Saarilahti K, Tenhunen M (2013) Commissioning of MRI-only based treatment planning procedure for external beam radiotherapy of prostate. Magn Reson Med 70:127–135

    Article  PubMed  Google Scholar 

  • Karlsson M, Karlsson MG, Nyholm T, Amies C, Zackrisson B (2009) Dedicated magnetic resonance imaging in the radiotherapy clinic. Int J Radiat Oncol Biol Phys 74:644–651

    Article  PubMed  Google Scholar 

  • Kim J, Glide-Hurst C, Doemer A, Wen N, Movsas B, Chetty IJ (2015) Implementation of a novel algorithm for generating synthetic CT images from magnetic resonance imaging data sets for prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys 91:39–47

    Article  PubMed  Google Scholar 

  • Kristensen BH, Laursen FJ, Logager V, Geertsen PF, Krarup-Hansen A (2008) Dosimetric and geometric evaluation of an open low-field magnetic resonance simulator for radiotherapy treatment planning of brain tumours. Radiother Oncol 87:100–109

    Article  PubMed  Google Scholar 

  • Lagendijk JJW, Raaymakers BW, Raaijmakers AJE, Overweg J, Brown KJ, Kerkhof EM, van der Put RW, Hardemark B, van Vutpen M, van der Heide UA (2008) MRI/linac integration. Radiother Oncol 86:25–29

    Article  PubMed  Google Scholar 

  • Lagendijk JJW, Raaymakers BW, Van den Berg CAT, Moerland MA, Philippens ME, van Vulpen M (2014) MR guidance in radiotherapy. Phys Med Biol 59:R349–R369

    Article  PubMed  Google Scholar 

  • Lambert J, Greer PB, Menk F, Patterson J, Parker J, Dahl K, Gupta S, Capp A, Wratten C, Tang C, Kumar M, Dowling J, Hauville S, Hughes C, Fisher K, Lau P, Denham JW, Salvado O (2011) MRI-guided prostate radiation therapy planning: investigation of dosimetric accuracy of MRI-based dose planning. Radiother Oncol 98:330–334

    Article  PubMed  Google Scholar 

  • Lee YK, Bollet M, Charles-Edwards G, Flower MA, Leach MO, McNair H, Moore E, Rowbottom C, Webb S (2003) Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Radiother Oncol 66:203–216

    Article  PubMed  Google Scholar 

  • Liu L, Cao Y, Fessler JA, Jolly S, Balter JM (2016) A female pelvic bone shape model for air/bone separation in support of synthetic CT generation for radiation therapy. Phys Med Biol 61:169–182

    Article  PubMed  Google Scholar 

  • Paulson ES, Erickson B, Schultz C, Li XA (2015) Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning. Med Phys 42:28–39

    Article  PubMed  Google Scholar 

  • Petersch B, Bogner J, Fransson A, Lorang T, Potter R (2004) Effects of geometric distortion in 0.2 T MRI on radiotherapy treatment planning of prostate cancer. Radiother Oncol 71:55–64

    Article  PubMed  Google Scholar 

  • Prabhakar R, Julka PK, Ganesh T, Munshi A, Joshi RC, Rath GK (2007) Feasibility of using MRI alone for 3D radiation treatment planning in brain tumors. Jpn J Clin Oncol 37:405–411

    Article  CAS  PubMed  Google Scholar 

  • Price RG, Kim JP, Zheng W, Chetty IJ, Glide-Hurst C (2016) Image guided radiation therapy using synthetic computed tomography images in brain cancer. Int J Radiat Oncol Biol Phys 95:1281–1289

    Article  PubMed  Google Scholar 

  • Prior P, Chen X, Botros M, Paulson ES, Lawton C, Erickson B, Li XA (2016) MRI-based IMRT planning for MR-linac: comparison between CT- and MRI-based plans for pancreatic and prostate cancers. Phys Med Biol 61:3819–3842

    Article  CAS  PubMed  Google Scholar 

  • Ramsey CR, Oliver AL (1998) Magnetic resonance imaging based digitally reconstructed radiographs, virtual simulation, and three-dimensional treatment planning for brain neoplasms. Med Phys 25:1928–1934

    Article  CAS  PubMed  Google Scholar 

  • Robson MD, Gatehouse PD, Bydder M, Bydder GM (2003) Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 27:825–846

    Article  PubMed  Google Scholar 

  • Schmidt MA, Payne GS (2015) Radiotherapy planning using MRI. Phys Med Biol 60:R323–R361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YM, Geurts M, Smilowitz JB, Sterpin E, Bednarz BP (2015) Monte Carlo simulations of patient dose perturbations in rotational-type radiotherapy due to a transverse magnetic field: a tomotherapy investigation. Med Phys 42:715–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Cao M, Kaprealian T, Sheng K, Gao Y, Han F, Gomez C, Santhanam A, Tenn S, Agazaryan N, Low DA, Hu P (2016) Accuracy of UTE-MRI-based patient setup for brain cancer radiation therapy. Med Phys 43:262–267

    Article  PubMed  Google Scholar 

  • Yin FF, Wang Z, Yoo S, Wu QJ, Kirkpatrick J, Larrier N, Meyer J, Willett CG, Marks LB (2008) Integration of cone-beam CT in stereotactic body radiation therapy. Technol Cancer Res Treat 7:133–139

    Article  PubMed  Google Scholar 

  • Zheng W, Kim JP, Kadbi M, Movsas B, Chetty IJ, Glide-Hurst CK (2015) magnetic resonance-based automatic air segmentation for generation of synthetic computed tomography scans in the head region. Int J Radiat Oncol Biol Phys 93:497–506

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Low .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Low, D.A. (2017). MRI Guided Radiotherapy. In: Wong, J., Schultheiss, T., Radany, E. (eds) Advances in Radiation Oncology. Cancer Treatment and Research. Springer, Cham. https://doi.org/10.1007/978-3-319-53235-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53235-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53233-2

  • Online ISBN: 978-3-319-53235-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics