Skip to main content

Combining Radiotherapy and Immunotherapy

  • Chapter
  • First Online:
Book cover Advances in Radiation Oncology

Part of the book series: Cancer Treatment and Research ((CTAR))

Abstract

Traditionally, radiation therapy was viewed as a localized treatment to eliminate an “in field” tumor or metastasis or total body therapy, when used as a strategy to elicit immunosuppression in preparation for allogeneic transplant. Over the past decade, the purview of localized radiation therapy has been expanded to include a role as an adjuvant to immunotherapy. It is now recognized that radiation therapy to a tumor has the potential of converting it into an in situ vaccine, by releasing relevant epitopes and neo-antigens and inducing cell death signals that enable cross priming to activate tumor-specific T cells. Once successfully activated, the immune system contributes to the elimination of the irradiated tumor. If immunological memory is achieved, the patient’s immune system can also reject systemic metastases, outside the radiation field (the “abscopal effect”) and maintain durable tumor control. We summarize the current knowledge of radiation therapy’s effects on the immune system, including results from preclinical and clinical trials, as well as future directions in combining radiotherapy and immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams S (2009) Toll-like receptor agonists in cancer therapy. Immunotherapy 1(6):949–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams S et al (2012) Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clin Cancer Res 18(24):6748–6757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apetoh L et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059

    Article  CAS  PubMed  Google Scholar 

  • Aspeslagh S et al (2016) Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer 52:50–66

    Article  CAS  PubMed  Google Scholar 

  • Attiga FA et al (2000) Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res 60(16):4629–4637

    CAS  PubMed  Google Scholar 

  • Bansal V, Ochoa JB (2003) Arginine availability, arginase, and the immune response. Curr Opin Clin Nutr Metab Care 6(2):223–228

    Article  CAS  PubMed  Google Scholar 

  • Barcellos-Hoff MH et al (1994) Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest 93(2):892–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos PD et al (2013) Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J Exp Med 210(11):2435–2466

    Article  PubMed  PubMed Central  Google Scholar 

  • Boucher JL, Moali C, Tenu JP (1999) Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cell Mol Life Sci 55(8–9):1015–1028

    Article  CAS  PubMed  Google Scholar 

  • Bouquet F et al (2011) TGFbeta1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 17(21):6754–6765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brody JD et al (2010) In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol 28(28):4324–4332

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgess AW, Metcalf D (1980) The nature and action of granulocyte-macrophage colony stimulating factors. Blood 56(6):947–958

    CAS  PubMed  Google Scholar 

  • Chakraborty M et al (2003) Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 170(12):6338–6347

    Article  CAS  PubMed  Google Scholar 

  • Chang CI, Liao JC, Kuo L (2001) Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res 61(3):1100–1106

    CAS  PubMed  Google Scholar 

  • Chen J et al (2012) Interferon-gamma-induced PD-L1 surface expression on human oral squamous carcinoma via PKD2 signal pathway. Immunobiology 217(4):385–393

    Article  CAS  PubMed  Google Scholar 

  • Demaria S et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58(3):862–870

    Article  PubMed  Google Scholar 

  • Demaria S et al (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11(2 Pt 1):728–734

    CAS  PubMed  Google Scholar 

  • Demaria S et al (2013) The TLR7 agonist imiquimod as an adjuvant for radiotherapy-elicited in situ vaccination against breast cancer. Oncoimmunology 2(10):e25997

    Article  PubMed  PubMed Central  Google Scholar 

  • DeNardo DG et al (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1(1):54–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng L et al (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type i interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41(5):843–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewan MZ et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15(17):5379–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewan MZ et al (2012) Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin Cancer Res 18(24):6668–6678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamond MS et al (2011) Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 208(10):1989–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Formenti SC, Demaria S (2012) Radiation therapy to convert the tumor into an in situ vaccine. Int J Radiat Oncol Biol Phys 84(4):879–880

    Article  PubMed  Google Scholar 

  • Fuertes MB et al (2011) Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha} + dendritic cells. J Exp Med 208(10):2005–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita H et al (2002) Cyclooxygenase-2 promotes prostate cancer progression. Prostate 53(3):232–240

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L et al (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14(7):1237–1243

    Article  CAS  PubMed  Google Scholar 

  • Ghiringhelli F et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15(10):1170–1178

    Article  CAS  PubMed  Google Scholar 

  • Golden EB, Formenti SC (2014) Is tumor (R)ejection by the immune system the “5th R” of radiobiology? Oncoimmunology 3(1):e28133

    Article  PubMed  PubMed Central  Google Scholar 

  • Golden EB et al (2013) An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 1(6):365–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Golden EB et al (2015) Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 16(7):795–803

    Article  CAS  PubMed  Google Scholar 

  • Gough MJ et al (2010) Adjuvant therapy with agonistic antibodies to CD134 (OX40) increases local control after surgical or radiation therapy of cancer in mice. J Immunother 33(8):798–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaldi AM et al (2014) Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 3:e28780

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulley JL et al (2005) Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 11(9):3353–3362

    Article  CAS  PubMed  Google Scholar 

  • Hasmim M et al (2013) Cutting edge: Hypoxia-induced Nanog favors the intratumoral infiltration of regulatory T cells and macrophages via direct regulation of TGF-beta1. J Immunol 191(12):5802–5806

    Article  CAS  PubMed  Google Scholar 

  • Hiniker SM et al (2012) A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl Oncol 5(6):404–407

    Article  PubMed  PubMed Central  Google Scholar 

  • Ino Y et al (2013) Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer 108(4):914–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins DC et al (1995) Roles of nitric oxide in tumor growth. Proc Natl Acad Sci U S A 92(10):4392–4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348(6230):74–80

    Article  CAS  PubMed  Google Scholar 

  • Kim JY et al (2006) Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med 38(5):474–484

    Article  CAS  PubMed  Google Scholar 

  • Kjaergaard J et al (2005) Active immunotherapy for advanced intracranial murine tumors by using dendritic cell-tumor cell fusion vaccines. J Neurosurg 103(1):156–164

    Article  CAS  PubMed  Google Scholar 

  • Klug F et al (2013) Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24(5):589–602

    Article  CAS  PubMed  Google Scholar 

  • Kroemer A et al (2007) OX40 controls functionally different T cell subsets and their resistance to depletion therapy. J Immunol 179(8):5584–5591

    Article  CAS  PubMed  Google Scholar 

  • Kuo P et al (2014) Galectin-1 mediates radiation-related lymphopenia and attenuates NSCLC radiation response. Clin Cancer Res 20(21):5558–5569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y et al (2009) Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114(3):589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei F et al (2013) Regulation of A1 by OX40 contributes to CD8(+) T cell survival and anti-tumor activity. PLoS ONE 8(8):e70635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J et al (2007) Lymphoma immunotherapy with CpG oligodeoxynucleotides requires TLR9 either in the host or in the tumor itself. J Immunol 179(4):2493–2500

    Article  CAS  PubMed  Google Scholar 

  • Lugade AA et al (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174(12):7516–7523

    Article  CAS  PubMed  Google Scholar 

  • Lugade AA et al (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180(5):3132–3139

    Article  CAS  PubMed  Google Scholar 

  • Ma Y et al (2010) Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin Immunol 22(3):113–124

    Article  PubMed  Google Scholar 

  • Marabelle A et al (2013) Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J Clin Invest 123(6):2447–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumura S et al (2008) Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol 181(5):3099–3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb EW et al (2006) The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin Cancer Res 12(15):4730–4737

    Article  CAS  PubMed  Google Scholar 

  • Obeid M et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61

    Article  CAS  PubMed  Google Scholar 

  • Park HJ et al (2012) Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res 177(3):311–327

    Article  CAS  PubMed  Google Scholar 

  • Pilones KA et al (2014) Invariant natural killer T cells regulate anti-tumor immunity by controlling the population of dendritic cells in tumor and draining lymph nodes. J Immunother Cancer 2(1):37

    Article  PubMed  PubMed Central  Google Scholar 

  • Postow MA et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366(10):925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyonteck SM et al (2012) Deficiency of the macrophage growth factor CSF-1 disrupts pancreatic neuroendocrine tumor development. Oncogene 31(11):1459–1467

    Article  CAS  PubMed  Google Scholar 

  • Reits EA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203(5):1259–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez PC et al (2003) L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol 171(3):1232–1239

    Article  CAS  PubMed  Google Scholar 

  • Ruby CE et al (2008) IL-12 is required for anti-OX40-mediated CD4 T cell survival. J Immunol 180(4):2140–2148

    Article  CAS  PubMed  Google Scholar 

  • Ruby CE et al (2009) Cutting edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right. J Immunol 183(8):4853–4857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruocco MG et al (2012) Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumor effects. J Clin Invest 122(10):3718–3730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stafford JH et al (2016) Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization. Neuro Oncol 18(6):797–806

    Article  PubMed  Google Scholar 

  • Stanley MA (2002) Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential. Clin Exp Dermatol 27(7):571–577

    Article  CAS  PubMed  Google Scholar 

  • Stout RD et al (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175(1):342–349

    Article  CAS  PubMed  Google Scholar 

  • Templeton AJ et al (2014) Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst 106(6): p. dju124

    Google Scholar 

  • Tsai CS et al (2007) Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. Int J Radiat Oncol Biol Phys 68(2):499–507

    Article  CAS  PubMed  Google Scholar 

  • Twyman-Saint Victor C et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520(7547):373–377

    Article  CAS  PubMed  Google Scholar 

  • Vanpouille-Box C et al (2015) TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 75(11):2232–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollmer J et al (2004) Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 34(1):251–262

    Article  CAS  PubMed  Google Scholar 

  • Vu MD et al (2007) OX40 costimulation turns off Foxp3 + Tregs. Blood 110(7):2501–2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Bergh A, Damber JE (2005) Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer. Clin Cancer Res 11(9):3250–3256

    Article  CAS  PubMed  Google Scholar 

  • Woo SR et al (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41(5):830–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wooldridge JE, Weiner GJ (2003) CpG DNA and cancer immunotherapy: orchestrating the antitumor immune response. Curr Opin Oncol 15(6):440–445

    Article  CAS  PubMed  Google Scholar 

  • Wrzesinski SH, Wan YY, Flavell RA (2007) Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res 13(18 Pt 1):5262–5270

    Article  CAS  PubMed  Google Scholar 

  • Xu J et al (2013) CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res 73(9):2782–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang KL et al (2013) Reciprocal complementation of the tumoricidal effects of radiation and natural killer cells. PLoS ONE 8(4):e61797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokouchi H et al (2008) Anti-OX40 monoclonal antibody therapy in combination with radiotherapy results in therapeutic antitumor immunity to murine lung cancer. Cancer Sci 99(2):361–367

    Article  CAS  PubMed  Google Scholar 

  • Zeng J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y et al (2014) CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 74(18):5057–5069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onyinye Balogun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Balogun, O., Formenti, S.C. (2017). Combining Radiotherapy and Immunotherapy. In: Wong, J., Schultheiss, T., Radany, E. (eds) Advances in Radiation Oncology. Cancer Treatment and Research. Springer, Cham. https://doi.org/10.1007/978-3-319-53235-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53235-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53233-2

  • Online ISBN: 978-3-319-53235-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics