Skip to main content

Emerging Biomimetic Approaches in the Optimization of Drug Therapies

  • Chapter
  • First Online:
Biomimetics and Bionic Applications with Clinical Applications

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 298 Accesses

Abstract

Pharmacology is the study of drug action and applications in living organisms. A significant aspect of pharmacology is the use of natural, semi-synthetic, and synthetic products in the prophylaxis or treatment of disease. Observations from nature are increasingly being adopted and adapted to solve real world challenges. Potential solutions to challenges of restoring biological systems to normal function may lie in normally functioning biological systems. Biomimetics is learning from nature and using nature’s methods in science and engineering. This review is based on a literature search of Medline conducted within the first week of October 2016, limited to articles published between 2005 and 5th October 2016. Search terms were Biomimetics and Pharmacology. The most recent 100 publications were used to determine emerging themes and interphases of Biomimetics and Pharmacology. Using the 100 most recent publications from the search, the emerging themes were biomaterial scaffolds (26%), bio-molecules with enhanced or novel pharmacologic properties (24%), nano-particles (11%), cancer therapeutics (9%), biomimetics method applied to pharmacology (6%), novel and improved antimicrobials (6%), stem cell science (4%), regenerative medicine (3%), siRNA molecules (2%), and molecule biosensors (1%). This review describes these themes using a few examples from literature. Advances in biomimetic research are rapidly expanding the scope of pharmacology and creating new themes and trends. These emerging themes are giving rise to new sub-specialties in pharmacology. However, great science will remain a multidisciplinary collaboration in one big venture—to keep improving the quality of life on earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Chaisemartin, L., Loriot, M.A.: Pharmacogenetics of anticancer drugs. Pathol. Biol. (Paris) 53, 116–124 (2005)

    Google Scholar 

  2. Goerig, M., Esch, J.: Friedrich Wilhelm Adam Sertürner—the discoverer of morphine Anasthesiol Intensivmed Notfallmed Schmerzther 26, 492–498 (1991)

    Google Scholar 

  3. Chang, J., Kwon, H.J.: Discovery of novel drug targets and their functions using phenotypic screening of natural products. J. Ind. Microbiol. Biotechnol. 43, 221–231 (2016)

    Google Scholar 

  4. Williams, L.A., O’Connar, A., Latore, L., Dennis, O., Ringer, S., Whittaker, J.A., Conrad, J., Vogler, B., Rosner, H., Kraus, W.: The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process. West Indian Med. J. 57, 327–331 (2008)

    Google Scholar 

  5. Luesch, H., Abreu, P.: A natural products approach to drug discovery: probing modes of action of antitumor agents by genome-scale cDNA library screening. Methods Mol. Biol. 572, 261–277 (2009)

    Google Scholar 

  6. Lahlou, M.: Screening of natural products for drug discovery. Expert Opin. Drug Discov. 2, 697–705 (2007)

    Google Scholar 

  7. Hwang, J., Jeong, Y., Park, J.M., Lee, K.H., Hong, J.W., Choi, J.: Biomimetics: forecasting the future of science, engineering, and medicine. Int. J. Nanomed. 10, 5701–5713 (2015)

    Google Scholar 

  8. Ganigara, A., Ravishankar, C., Ramavakoda, C., Nishtala, M.: Fatal hyperkalemia following succinylcholine administration in a child on oral propranolol. Drug. Metab. Pers. Ther. 30, 69–71 (2015)

    Google Scholar 

  9. Joshi, M.K., Pant, H.R., Tiwari, A.P., Maharjan, B., Liao, N., Kim, H.J., Park, C.H., Kim, C.S.: Three-dimensional cellulose sponge: fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration. Carbohydr. Polym. 136, 154–162 (2016)

    Google Scholar 

  10. Yorulmaz, S., Jackman, J.A., Hunziker, W., Cho, N.J.: Supported lipid bilayer platform to test inhibitors of the membrane attack complex: insights into biomacromolecular assembly and regulation. Biomacromol. 16, 3594–3602 (2015)

    Google Scholar 

  11. Azevedo, H.S., Pashkuleva, I.: Biomimetic supramolecular designs for the controlled release of growth factors in bone regeneration. Adv. Drug Deliv. Rev. 94, 63–76 (2015)

    Google Scholar 

  12. Fisher, L.E., Yang, Y., Yuen, M.F., Zhang, W., Nobbs, A.H., Su, B.: Bactericidal activity of biomimetic diamond nanocone surfaces. Biointerphases 11(1), 011014. https://doi.org/10.1116/1.4944062. PMID: 26992656.011014 (2016)

  13. Archana, D., Dutta, J., Dutta, P.K.: Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int. J. Biol. Macromol. 57, 193–203 (2013)

    Google Scholar 

  14. Kim, J.I., Pant, H.R., Sim, H.J., Lee, K.M., Kim, C.S.: Electrospun propolis/polyurethane composite nanofibers for biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 44, 52–57 (2014)

    Google Scholar 

  15. Mandal, A., Sekar, S., Seeni Meera, K.M., Mukherjee, A., Sastry, T.P., Mandal, A.B.: Fabrication of collagen scaffolds impregnated with sago starch capped silver nanoparticles suitable for biomedical applications and their physicochemical studies. Phys. Chem. Chem. Phys. 16, 20175–20183 (2014)

    Google Scholar 

  16. Penchala, S.C., Miller, M.R., Pal, A., Dong, J., Madadi, N.R., Xie, J., Joo, H., Tsai, J., Batoon, P., Samoshin, V., Franz, A., Cox, T., Miles, J., Chan, W.K., Park, M.S., Alhamadsheh, M.M.: A biomimetic approach for enhancing the in vivo half-life of peptides. Nat. Chem. Biol. 11, 793–798 (2015)

    Google Scholar 

  17. Wang, X.Y., Huang, Z.X., Chen, Y.G., Lu, X., Zhu, P., Wen, K., Fu, N., Liu, B.Y.: A multiple antigenic peptide mimicking peptidoglycan induced T cell responses to protect mice from systemic infection with staphylococcus aureus. PLoS ONE 10, e0136888 (2015)

    Google Scholar 

  18. Guarnieri, F.: Designing a small molecule erythropoietin mimetic. Methods Mol. Biol. 1289, 185–210 (2015)

    Google Scholar 

  19. Farrugia, B.L., Lord, M.S., Melrose, J., Whitelock, J.M.: Can we produce heparin/heparan sulfate biomimetics using “mother-nature” as the gold standard? Mol. 20, 4254–4276 (2015)

    Google Scholar 

  20. Datta, N.R., Krishnan, S., Speiser, D.E., Neufeld, E., Kuster, N., Bodis, S., Hofmann, H.: Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich’s “magic (nano)bullet” for cancer theranostics? Cancer Treat. Rev. 50, 217–227 (2016)

    Google Scholar 

  21. Boissenot, T., Bordat, A., Fattal, E., Tsapis, N.: Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: from theoretical considerations to practical applications. J. Control. Release 241, 144–163 (2016)

    Google Scholar 

  22. Wang, Z., Cabrera, M., Yang, J., Yuan, L., Gupta, B., Liang, X., Kemirembe, K., Shrestha, S., Brashear, A., Li, X., Porcella, S.F., Miao, J., Yang, Z., Su, X.Z., Cui, L.: Genome-wide association analysis identifies genetic loci associated with resistance to multiple antimalarials in plasmodium falciparum from China-Myanmar border. Sci. Rep. 6, 33891 (2016)

    Google Scholar 

  23. Woodrow, C.J., White, N.J.: The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol. Rev. (2016)

    Google Scholar 

  24. Avitia-Dominguez, C., Sierra-Campos, E., Betancourt-Conde, I., Aguirre-Raudry, M., Vazquez-Raygoza, A., Luevano-De la Cruz, A., Favela-Candia, A., Sarabia-Sanchez, M., Rios-Soto, L., Mendez-Hernandez, E., Cisneros-Martinez, J., Palacio-Gastelum, M. G., Valdez-Solana, M., Hernandez-Rivera, J., De Lira-Sanchez, J., Campos-Almazan, M., Tellez-Valencia, A.: Targeting plasmodium metabolism to improve antimalarial drug design. Curr. Protein Pept. Sci. 17, 260–274 (2016)

    Google Scholar 

  25. Lawal, B., Shittu, O.K., Kabiru, A.Y., Jigam, A.A., Umar, M.B., Berinyuy, E.B., Alozieuwa, B.U.: Potential antimalarials from African natural products: a review. J. Intercult. Ethnopharmacol. 4, 318–343 (2015)

    Google Scholar 

  26. Marques, J., Valle-Delgado, J. J., Urban, P., Baro, E., Prohens, R., Mayor, A., Cistero, P., Delves, M., Sinden, R. E., Grandfils, C., de Paz, J. L., Garcia-Salcedo, J. A. & Fernandez-Busquets, X.: Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery. Nanomed (2016)

    Google Scholar 

  27. Unzueta, U., Cespedes, M.V., Vazquez, E., Ferrer-Miralles, N., Mangues, R., Villaverde, A.: Towards protein-based viral mimetics for cancer therapies. Trends Biotechnol. 33, 253–258 (2015)

    Google Scholar 

  28. Huang, P., Gao, Y., Lin, J., Hu, H., Liao, H.S., Yan, X., Tang, Y., Jin, A., Song, J., Niu, G., Zhang, G., Horkay, F., Chen, X.: Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics. ACS Nano 9, 9517–9527 (2015)

    Google Scholar 

  29. Garcia-Hevia, L., Fernandez, F., Gravalos, C., Garcia, A., Villegas, J.C., Fanarraga, M.L.: Nanotube interactions with microtubules: implications for cancer medicine. Nanomed. (Lond) 9, 1581–1588 (2014)

    Google Scholar 

  30. Fu, J., Wang, D., Mei, D., Zhang, H., Wang, Z., He, B., Dai, W., Wang, X., Zhang, Q.: Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer. J Control Release 204, 11–19 (2015)

    Google Scholar 

  31. Talbott, R.L., Borzilleri, R.M., Chaudhry, C., Fargnoli, J., Shen, H., Fairchild, C., Barnhart, B., Ortega, M., McDonagh, T.E., Vuppugalla, R., Vite, G.D., Hunt, J.T., Gottardis, M., Naglich, J.G.: Pharmacology of smac mimetics; chemotype differentiation based on physical association with caspase regulators and cellular transport. Exp. Cell Res. 338, 251–260 (2015)

    Google Scholar 

  32. Duez, J., Holleran, J.P., Ndour, P.A., Pionneau, C., Diakite, S., Roussel, C., Dussiot, M., Amireault, P., Avery, V.M., Buffet, P.A.: Mechanical clearance of red blood cells by the human spleen: potential therapeutic applications of a biomimetic RBC filtration method. Transfus. Clin. Biol. 22, 151–157 (2015)

    Google Scholar 

  33. Villasante, A., Vunjak-Novakovic, G.: Tissue-engineered models of human tumors for cancer research. Expert Opin. Drug Discov. 10, 257–268 (2015)

    Google Scholar 

  34. Fan, Z., Lu, J.G.: Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 5, 1561–1573 (2005)

    Google Scholar 

  35. Ozgur, U.A.Y., Liu, C., Teke, A., Reshchikov, M., Dogan, S., Avrutin, V., Cho, S., Morkoc, H.: A comprehensive review of ZnO materials and devices. Appl. Phy. Rev. 98, 1–103 (2005)

    Google Scholar 

  36. Ahmed, F., Arshi, N., Jeong, Y.S., Anwar, M.S., Dwivedi, S., Alsharaeh, E., Koo, B.H.: Novel biomimatic synthesis of ZnO nanorods using egg white (albumen) and their antibacterial studies. J. Nanosci. Nanotechnol. 16, 5959–5965 (2016)

    Google Scholar 

  37. Cerqueira, M.T., Pirraco, R.P., Marques, A.P.: Stem cells in skin wound healing: are we there yet? Adv. Wound. Care (New Rochelle) 5, 164–175 (2016)

    Google Scholar 

  38. Tuch, B.E.: Stem cells—a clinical update. Aust. Fam. Phys. 35, 719–721 (2006)

    Google Scholar 

  39. Kiatpongsan, S., Tannirandorn, Y., Virutamasen, P.: Introduction to stem cell medicine. J. Med. Assoc. Thai. 89, 111–117 (2006)

    Google Scholar 

  40. Mason, C., Dunnill, P.: A brief definition of regenerative medicine. Regen. Med. 3, 1–5 (2008)

    Google Scholar 

  41. Daar, A.S.: The future of replacement and restorative therapies: from organ transplantation to regenerative medicine. Transplant. Proc. 45, 3450–3452 (2013)

    Google Scholar 

  42. Christ, G.J., Saul, J.M., Furth, M.E., Andersson, K.E.: The pharmacology of regenerative medicine. Pharmacol. Rev. 65, 1091–1133 (2013)

    Google Scholar 

  43. Agrawal, N., Dasaradhi, P.V., Mohmmed, A., Malhotra, P., Bhatnagar, R.K., Mukherjee, S.K.: RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 67, 657–685 (2003)

    Google Scholar 

  44. Kurisaki, K., Kurisaki, A., Valcourt, U., Terentiev, A.A., Pardali, K., Ten Dijke, P., Heldin, C.H., Ericsson, J., Moustakas, A.: Nuclear factor YY1 inhibits transforming growth factor beta- and bone morphogenetic protein-induced cell differentiation. Mol. Cell. Biol. 23, 4494–4510 (2003)

    Google Scholar 

  45. Jiang, Z.Y., Zhou, Q.L., Coleman, K.A., Chouinard, M., Boese, Q., Czech, M.P.: Insulin signaling through Akt/protein kinase B analyzed by small interfering RNA-mediated gene silencing. Proc. Natl. Acad. Sci. USA 100, 7569–7574 (2003)

    Google Scholar 

  46. Hsieh, A.C., Bo, R., Manola, J., Vazquez, F., Bare, O., Khvorova, A., Scaringe, S., Sellers, W.R.: A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens. Nucleic Acids Res. 32, 893–901 (2004)

    Google Scholar 

  47. Zender, L., Hutker, S., Liedtke, C., Tillmann, H.L., Zender, S., Mundt, B., Waltemathe, M., Gosling, T., Flemming, P., Malek, N.P., Trautwein, C., Manns, M.P., Kuhnel, F., Kubicka, S.: Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc. Natl. Acad. Sci. USA 100, 7797–7802 (2003)

    Google Scholar 

  48. Zhou, T., Aumais, J.P., Liu, X., Yu-Lee, L.Y., Erikson, R.L.: A role for Plk1 phosphorylation of NudC in cytokinesis. Dev. Cell 5, 127–138 (2003)

    Google Scholar 

  49. Li, Q., Brass, A.L., Ng, A., Hu, Z., Xavier, R.J., Liang, T.J., Elledge, S.J.: A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc. Natl. Acad. Sci. USA 106, 16410–16415 (2009)

    Google Scholar 

  50. Bric, A., Miething, C., Bialucha, C.U., Scuoppo, C., Zender, L., Krasnitz, A., Xuan, Z., Zuber, J., Wigler, M., Hicks, J., McCombie, R.W., Hemann, M.T., Hannon, G.J., Powers, S., Lowe, S.W.: Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell 16, 324–335 (2009)

    Google Scholar 

  51. Whitehurst, A.W., Bodemann, B.O., Cardenas, J., Ferguson, D., Girard, L., Peyton, M., Minna, J.D., Michnoff, C., Hao, W., Roth, M.G., Xie, X.J., White, M.A.: Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nat. 446, 815–819 (2007)

    Google Scholar 

  52. Struwe, W.B., Warren, C.E.: High-throughput RNAi screening for N-glycosylation dependent loci in Caenorhabditis elegans. Methods Enzymol. 480, 477–493 (2010)

    Google Scholar 

  53. Dominska, M., Dykxhoorn, D.M.: Breaking down the barriers: siRNA delivery and endosome escape. J. Cell Sci. 123, 1183–1189 (2010)

    Google Scholar 

  54. Kong, J., Yu, X., Hu, W., Hu, Q., Shui, S., Li, L., Han, X., Xie, H., Zhang, X., Wang, T.: A biomimetic enzyme modified electrode for H2O2 highly sensitive detection. Analyst 140, 7792–7798 (2015)

    Google Scholar 

  55. Ma, H., Yan, T., Zhang, Y., Gao, P., Pang, X., Du, B., Wei, Q.: A biomimetic mussel-inspired photoelectrochemical biosensing chip for the sensitive detection of CD146. Analyst 140, 5019–5022 (2015)

    Google Scholar 

  56. Mascini, M., Macagnano, A., Monti, D., Del Carlo, M., Paolesse, R., Chen, B., Warner, P., D’Amico, A., Di Natale, C., Compagnone, D.: Piezoelectric sensors for dioxins: a biomimetic approach. Biosens. Bioelectron. 20, 1203–1210 (2004)

    Google Scholar 

  57. Parry, M.A., Andralojc, P.J., Scales, J.C., Salvucci, M.E., Carmo-Silva, A.E., Alonso, H., Whitney, S.M.: Rubisco activity and regulation as targets for crop improvement. J. Exp. Bot. 64, 717–730 (2013)

    Google Scholar 

  58. Jain, K., Mehra, N.K., Jain, N.K.: Potentials and emerging trends in nanopharmacology. Curr. Opin. Pharmacol. 15, 97–106 (2014)

    Google Scholar 

Download references

Acknowledgements

I give credit to Dharmacon, RNAi, Gene expression and Gene editing (http://dharmacon.gelifesciences.com/applications/rna-interference/sirna/) for material on the segment on siRNA. I acknowledge the support of Dr. Meir Israelowitz, Dr. Birgit Weyand, Prof Kerstin Reimers (of blessed memory), Prof Peter Vogt and colleagues at Hanover Medical School, Germany, for supporting my wife and me through the years and showing us developments in Biomimetics and plastic surgery. I acknowledge Dr Afieharo Michael (my wife) for her contributions to this chapter and to my career. I acknowledge my mentor Professor Catherine Falade for her support and encouragement through the years. Credit goes to many more people and sources that I wish to say all are duly recognized with gratitude. I thank God for Grace, for all the support, and encouragement given to me towards completing this work.

Author information

Authors and Affiliations

Authors

Contributions

The author declares no competing interests.

Corresponding author

Correspondence to Obaro S. Michael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Michael, O.S. (2021). Emerging Biomimetic Approaches in the Optimization of Drug Therapies. In: Israelowitz, M., Weyand, B., von Schroeder, H., Vogt, P., Reuter, M., Reimers, K. (eds) Biomimetics and Bionic Applications with Clinical Applications. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-53214-1_9

Download citation

Publish with us

Policies and ethics