Skip to main content

Torsional Magnetic Angle for Magnetospirillum gryphiswaldense

  • Chapter
  • First Online:
Biomimetics and Bionic Applications with Clinical Applications

Abstract

In the present study we tested magnetosomes isolated from the magnetic bacterium Magnetospirillum gryphiswaldense for their magnetic qualities when embedded in three different environmental surroundings: (1) medium (Phosphate buffer saline PBS), (2) gelatin gel matrix and as (3) powder. (3) is used as base line (standard control). We studied the magnetic hysteresis, thermal degradation in relation to theoretical results obtained with natural magnetosomes, by using an indirect analysis with biomimetic principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MTB:

Magnetotactic bacteria

M(H):

Hysteresis loops M (H)

FF:

Solution of standard phosphate buffered saline (PBS)

P:

Dry powder denoted as P

FF-G:

Immobilized in a gelatin gel matrix denoted

Hc:

Coercivity

Mr:

Magnetic remanence

Ms:

Magnetic saturation

References

  1. Wolken, J.J.: Light Detectors Photoreceptors, and Imaging Systems in Nature. Oxford University Press (1995)

    Google Scholar 

  2. Israelowitz, M., Rizvi, S.W., von Schroeder, H.P.: J. Lumin. 126, 149 (2007)

    Article  Google Scholar 

  3. Israelowitz, M., Kwon, K.A., Rizvi, S.W., Gille, C., von Schroeder, H.P.: J. Bionic Eng. 8, 129 (2011)

    Article  Google Scholar 

  4. Israelowitz, M., Weyand, B., Leiterer, C., Munoz, V., Martinez-Tomas, C., Herraiz-Llacer, M., Slowik, I., Beleites, C., Fritzsche, W., Krafft, C., Henkel, T., Reuter, M., Rizvi, S., Gille, C., Reimers, K., Vogt, P., von Schroeder, H.P.: New J. Sci. (2014)

    Google Scholar 

  5. Israelowitz, M., Rizvi, S.W., Gille, C., Holm, C., von Schroeder, H.P.: (n.d.)

    Google Scholar 

  6. Bellini, S.: Su Di Un Particolare Comportamento Di Batteri D’acqua Dolce Instituto Di Microbiologia dell’Universita Di Pavia. Tipografia Popolare (1963)

    Google Scholar 

  7. Blakemore, R.: Science 190 (1975)

    Google Scholar 

  8. Klein, C.: Manual of Mineral Science 22nd Eds. John Wiley and Sons, New York (2002)

    Google Scholar 

  9. Banerjee, S., Moskowitz, B.: In: Magn. Biominer. Magnetoreception Org. New Biomagn, pp. 17–42. Plenum Press, New York (1985)

    Google Scholar 

  10. Favrie, D., Schüler, D.: Chem. Rev. 108, 4875 (2008)

    Article  Google Scholar 

  11. Lee, S.K., Romalis, M.V.: J. Appl. Phys. 103, 084904 (2008)

    Article  Google Scholar 

  12. van der Ziel, A.: Noise in Solid State Devices and Circuits. Wiley, New York, NY, USA (1986)

    Google Scholar 

  13. Frieden, B.R.: Probability, Statistical Optics and Data Testing. Springer, New York, NY, USA (1991)

    Book  Google Scholar 

  14. Marasco, P.L. Dereniak, P.L.: In: SPIE, pp. 363–378 (1993)

    Google Scholar 

  15. Dereniak, D.L., Boreman, G.D.: Infrared Detectors and Systems. John Wiley & Sons, New York (1996)

    Google Scholar 

  16. Pfeiffer, D., Schüler, D.: Quantifying the benefit of a dedicated “Magnetoskeleton” in bacterial magnetotaxis by live-cell motility tracking and soft agar swimming assay. Appl. Environ. Microbiol. 86(3), (2020). https://doi.org/10.1128/AEM.01976-19

  17. Wolfran, S.: Mathematica: Ein System für Mathematik auf dem Computer. Addison-Wesley Publishing Company (1994)

    Google Scholar 

  18. Pfeiffer, H.: Phys. Sataus. Solidi. A 118, 295 (1990)

    Article  Google Scholar 

  19. Heyen, U., Schüler, D.: Appl. Microbiol. Biotechnol. 61, 536 (n.d.)

    Google Scholar 

  20. Barber-Zucker, S., Uebe, R., Davidov, G., Navon, Y., Sherf, D., Chill, J.H., Kass, I., Bitton, R., Schüler, D., Zarivach, R.: Disease-homologous mutation in the cation diffusion facilitator protein MamM causes single-domain structural loss and signifies its importance. Sci. Rep. 6, 31933 (2016). https://doi.org/10.1038/srep31933

  21. Rosenfeldt, S., Mickoleit, F., Jörke, C., Clement, J.H., Markert, S., Jérôme, V., Schwarzinger, S., Freitag, R., Schüler, D., Uebe, R., Schenk, A.S.: Towards standardized purification of bacterial magnetic nanoparticles for future in vivo applications. Acta. Biomater. 120, 293–303 (2021). https://doi.org/10.1016/j.actbio.2020.07.042

  22. Bazylinski, D.: Chem. Geol. 135, 191 (n.d.)

    Google Scholar 

  23. Devouard, B., Posfal, P., Huan, X., Bazylinski, D., Frankel, R., Buseck, P.: Am. Mineral. 83, 1387 (1998)

    Article  Google Scholar 

  24. Klein, C., Dutrow, B.: Mineral Science, 23nd edn. Wiley (2007)

    Google Scholar 

  25. Preisach, F.: Z. Für Phys. 94, 277 (1933)

    Article  Google Scholar 

  26. Liorzou, F., Phelps, B., Atherton, D.L.: IEEE Trans. Magn. 36, 418 (2000)

    Article  Google Scholar 

  27. Akhter, M.A., Mapps, D.J., Ma Tan, Q.Y., Petford-Long, A., Doole, R., Tan, M., Doole, P.L.: J. Appl. Phys. 81, 4122 (n.d.)

    Google Scholar 

  28. Jiles, D.C., Atherton, D.L.: J. Magn. Magn. Mater. 61, 48 (1986)

    Article  Google Scholar 

  29. Stoner, E.C., Wohlfarth, E.P.: R. Soc. Lond. A 240, 599 (n.d.)

    Google Scholar 

  30. Zhang, Y., Fei, C., Wang, R., Yang, G., Xiong, R., Shi, J.: Hydrothermal method. Send J. Nanosci. Nanotechnol. 10, 6395 (2010)

    Google Scholar 

  31. Maki, D., Homburg, J.A., Brosowske, D.A.: Archeol. Prospect. 13, 207 (2006)

    Article  Google Scholar 

  32. Cullity, C., Graham, D.: Introduction to Magnetic Materials, 2nd edn. Wiley-IEEE, New York (2008)

    Book  Google Scholar 

  33. Jiles, D.: Introduction to Magnetism and Magnetic Materials. Chapman & Hall, London (1998)

    Google Scholar 

  34. Weiss, P.: Comptes Rendus 143, 1136 (1906)

    Google Scholar 

  35. Carey, R., Issac, E.D.: Magnetic Domains and Techniques for Their Observation. The English University Press Ltd, London (1996)

    Google Scholar 

  36. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. California Inst. of Technology, US (1963)

    MATH  Google Scholar 

  37. Bedanta, S., Kleemann, W.: J. Phys. 42, 013001 (2009)

    Google Scholar 

  38. Bean, C.P., Livingston, J.D.: J. Appl. Phys. 30, 120S (1959)

    Article  Google Scholar 

  39. Guimarães, A.P.: Principles of Nanomagnetism. Springer, Berlin/Heidelberg, Germany (2009)

    Book  Google Scholar 

  40. Frenkel, J., Doefman, J.: Nature 126, 2714 (n.d.)

    Google Scholar 

  41. Mørup, S., Hansen, M.F., Frandsen, C.: Comprehensive Nanoscience and Technology Andrews. In: Scholes, D., Wiederrecht, G., (eds). Elsevier, Amsterdam, The Netherlands (2011)

    Google Scholar 

  42. Bertotti, G.: Hysterisis in Magnetism: For Physicists, Materials Scientists, and Engineers. Academic Press-Elsevier, Waltham, MA, USA (1998)

    Google Scholar 

  43. Gubin, S.P., Kossharov, Y.A., Khomutov, G.B., Yurkov, G.Y.: Russ. Chem. Rev. 74, 489 (2005)

    Article  Google Scholar 

  44. Issa, B., Obaidat, I.M., Albiss, B., Haik, Y.: Int. J. Moelcular Sci. 14, 21266 (2003)

    Article  Google Scholar 

  45. Dobrynin, A.N., Ievlev, D.N., Temst, K., Lievens, P., Margueritat, J., Gonzalo, J., Alfonso, C.N., Zhou, S.Q., Vantomme, A., Piscopiello, E., van Tendeloo, G.: Appl. Phys. Lett. 87, 012501 (2005)

    Article  Google Scholar 

  46. Kodama, R.H.: J. Magn. Mater. 200, 359 (n.d.)

    Google Scholar 

  47. Strbak, O., Kopcansky, P., Frollo, I.: Measument Sci. Rev. 11, 85 (2011)

    Google Scholar 

  48. Barnejee, S.K., Moskowitz, B.M.: Plenum Publ. Corp. 17 (1985)

    Google Scholar 

  49. Sone, K., Naganuma, H., Takamichi, I., Takashi, M., Okuruma, S.: Sci. Rep. 5, 9348 (2015)

    Google Scholar 

  50. Preskill, J.: Phys. Rev. Lett. 43, 1365 (1979)

    Article  Google Scholar 

  51. Giblin, S.R., Bramwell, S.T., Holdsworth, P.C.W., Prabhakaran, D., Terry, I.: Nat. Phys. 7, (2011)

    Google Scholar 

  52. Price, P.B., Shirk, E.K., Osborne, W.Z., Pinsky, L.S.: Phys. Rev. Lett. 35, 487 (1975)

    Article  Google Scholar 

  53. Cabrera, B.: Phys. Rev. Lett. 48, 1378 (1982)

    Article  Google Scholar 

  54. Preskill, J.: Ann. Rev. Nucl. Part Sci. 34, 461 (1984)

    Article  Google Scholar 

  55. Moulin, F.: Nuovo. Cimento. 116, 869 (2001)

    Google Scholar 

  56. Castelnovo, C., Moessner, R., Sondhi, S.L.: Nature 451, 42 (2008)

    Article  Google Scholar 

  57. Ray, M.W., Ruokokoski, E., Kandel, S., Möttönen, S., Hall, D.S.: Nature 505, 657 (2014)

    Article  Google Scholar 

  58. Dirac, P.: Proc. Roy. Soc. Lond. A 133, 60 (1931)

    Article  Google Scholar 

  59. Wolfgang, R.: Am. J. Phys. 57, 993 (1989)

    Article  Google Scholar 

  60. Battle, X., Labarta, A.: J. Phys. Part D 35, 3069 (2001)

    Google Scholar 

  61. Ho, C.-H., Lai, C.-H.: IEEE Trans. Magn. 42, 3069 (2006)

    Article  Google Scholar 

  62. Jackson, J.D.: Classical Electrodynamics 3rd edn. Wiley (1998)

    Google Scholar 

  63. Krauss, J.D.: Electronmagnetics 4th edn. McGraw-Hill Series in Electrical Engineering (1991)

    Google Scholar 

  64. Nedkov, I., Vanderberghe, R.E., Tailhades, P.: Nanosized Magnetite for Biomedical Applications, in Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices. In: Mark, J., Schulz, V., Shanov, N., Yeoheung Y. (eds). Artech Houses (2009)

    Google Scholar 

  65. Müller, R., Dutz, S., Hergt, R., Schmidt, C.H., Steinmetz, H., Zeisberger, Gawalek, Z.: J. Magn. Magn. Mater. 310, 2399 (2007)

    Article  Google Scholar 

  66. Mickoleit, F., Lanzloth, C., Schüler, D.: A versatile toolkit for controllable and highly selective multifunctionalization of bacterial magnetic nanoparticles. Small 16(16), e1906922. https://doi.org/10.1002/smll.201906922

  67. Zhang, Y., Zhang, X., Jiang, W., Li, Y., Li, J.: Appl. Env. Microbiol. 77, 5851 (2011)

    Article  Google Scholar 

  68. Kolinko, I., Lohße, A., Borg, S., Raschdorf, O., Jogler, C., Tu, Q., Pósfai, M., Tompa, E., Plitzko, J.M., Brachmann, A., Wanner, G., Müller, R., Zhang, Y., Schüler, D.: Nat. Nanotechnol. Lett. 9, 193 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Strauß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strauß, S. et al. (2021). Torsional Magnetic Angle for Magnetospirillum gryphiswaldense. In: Israelowitz, M., Weyand, B., von Schroeder, H., Vogt, P., Reuter, M., Reimers, K. (eds) Biomimetics and Bionic Applications with Clinical Applications. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-53214-1_4

Download citation

Publish with us

Policies and ethics