Skip to main content

Biomimetics and Its Influence in Plastic and Reconstructive Surgery

  • Chapter
  • First Online:
Biomimetics and Bionic Applications with Clinical Applications

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

The term “biomimetics” has evolved from technical achievements based on principles found in nature. Some of its general features are found in the four areas of plastic and reconstructive surgery: reconstruction, burns, hand and aesthetic surgery. A plastic surgeon mimics concepts of nature by transplanting tissue from one to the other side or rerouting tendons or muscles to another side in order to treat local or functional defects. In contrast, with biomimetics we try to implement principles and solutions from nature in order to form or create devices, materials or technical achievements which some of them can also help to restore human tissues, body parts or body functions. This article aims to highlight interfaces between biomimetic research and principles and practice of plastic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vincent, J.F.V.: Biomimetics—a review. 223(Part H), 919–39 (2009)

    Google Scholar 

  2. Harkness, J.M.: In appreciation a lifetime of connections: Otto Herbert Schmitt, 1913–1998. Phy. Perspect. 4(4)456–490 (2002)

    Google Scholar 

  3. Schmitt, F.O.: The never-ceasing search. Philadelphia, vol. 188 (1990)

    Google Scholar 

  4. Robinette, J.C.: Living Prototypes—The Key to New Technology: Bionics Symposium ; 13–14–15 September 1960. Wright-Patterson Air Force Base, Ohio (WADD technical report; Bd. 60) (1960)

    Google Scholar 

  5. Benyus, J.M.: Biomimicry : innovation inspired by nature. William Morrow 308 S (1997)

    Google Scholar 

  6. Shiffman, M.A., Di Giuseppe, A.: Herausgeber. Cosmetic surgery: art and techniques. Springer, Heidelberg, New York 1192 S (2013)

    Google Scholar 

  7. Singh, V.: Sushruta: the father of surgery. Natl. J. Maxillofac Surg. 8(1), 1–3 (2017)

    Article  Google Scholar 

  8. Tennenhaus, M., Lukascz, L., Ogawa, R., Rennekampff, H.: A brief historical review of flaps and burn reconstruction. Wounds 20(7), 214–218 (2008)

    Google Scholar 

  9. Thompson, L.: Plastic Surgery (Health and Medical Issues Today). Greenwood Pub Group (2011)

    Google Scholar 

  10. Chick, L.R.: Brief history and biology of skin grafting. Ann. Plast. Surg. 21(4), 358–365 (1988)

    Article  Google Scholar 

  11. Thomas, R.L., Fries, A., Hodgkinson, D.: Plastic Surgery Pioneers of the Central Powers in the Great War (2018)

    Google Scholar 

  12. Wallace, A.F.: History of plastic surgery: the early development of pedicle flaps. J. Royal Soc. Plast. Surg. 71, 834–838 (1978)

    Google Scholar 

  13. Whitaker, I.S., Karoo, R.O., Spyrou, G.M., Fenton, O.M.: The birth of plastic surgery: the story of nasal reconstruction from the Edwin Smith Papyrus to the twenty-first century. Plast. Reconstr. Surg. 120, 327–336 (2007)

    Article  Google Scholar 

  14. Tamai, S.: History of microsurgery. Plast. Reconstr. Surg. 124(6 Suppl), e282–e294 (2009)

    Article  Google Scholar 

  15. Manchot, C.: The cutaneous arteries of the human body. [Hautarterien des menschlichen Körpers]. Springer Science and Business Media, LCC (1983)

    Google Scholar 

  16. Salmon, M., Taylor, G.I., Tempest, M.N.: Arteries of the Skin. Churchill Livingstone 174 S (1988)

    Google Scholar 

  17. Taylor, G.I., Palmer, J.H.: The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br. J. Plast. Surg. 40, 113–141 (1987)

    Article  Google Scholar 

  18. Clodius, L., Piller, N., Casley-Smith, J.: The problems of lymphatic microsurgery for lymphedema. Lymphology 14(2), 69–76 (1981)

    Google Scholar 

  19. Becker, C., Vasile, J., Levine, J., Batista, B., Studinger, R., Chen, C., u. a.: Microlymphatic surgery for the treatment of iatrogenic lymphedema. Clin Plast Surg. 39(4), 385–98 (2012)

    Google Scholar 

  20. Diaz-Siso, J., Bueno, E., Sisk, G., Marty, F., Pomahac, B., Tullius, S.: Vascularized composite tissue allotransplantation–state of the art. Clin. Transpl. 27(3), 330–337 (2013)

    Article  Google Scholar 

  21. Jaggessar, A., Shahali, H., Mathew, A., Yarlagadda, P.K.D.V.: Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnol. 15(1) (2017) Verfügbar unter: http://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-017-0306-1

  22. Sailaja, G.S., Ramesh, P., Vellappally, S., Anil, S., Varma, H.K.: Biomimetic approaches with smart interfaces for bone regeneration. J. Biomed. Sci. 23(1), 77 (2016)

    Google Scholar 

  23. Green, D.W., Watson, G.S., Watson, J.A., Lee, D.-J., Lee, J.-M., Jung, H.-S.: Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution. Acta Biomater. 42, 33–45 (2016)

    Article  Google Scholar 

  24. Martins, I.M., Reis, R.L., Azevedo, H.S.: Phage display technology in biomaterials engineering: progress and opportunities for applications in regenerative medicine. ACS Chem. Biol. 11(11), 2962–80 (2016)

    Google Scholar 

  25. Brett, E., Flacco, J., Blackshear, C., Longaker, M.T., Wan, D.C.: Biomimetics of bone implants: the regenerative road. BioRes. Open Access. 6(1), 1–6 (2017)

    Article  Google Scholar 

  26. Myerhoff, C., Archdeacon, M.: Autogenous bone graft: donor sites and techniques. J. Bone Joint Surg. Am. 93, 2227–36

    Google Scholar 

  27. Buck, D.W., Dumanian, G.A.: Bone biology and physiology: Part II. Clinical correlates. Plast. Reconstr. Surg. 129, 950e (2012)

    Article  Google Scholar 

  28. Verboket, R., Leiblein, M., Seebach, C., Nau, C., Janko. M., Bellen, M., u. a.: Autologous cell-based therapy for treatment of large bone defects: from bench to bedside. Eur. J. Trauma. Emerg. Surg. Off Publ. Eur. Trauma Soc. 44(5), 649–65 (2018)

    Google Scholar 

  29. Duan, R., Barbieri, D., Luo, X., Weng, J., Bao, C., de Bruijn, J.D., u. a.: Variation of the bone forming ability with the physicochemical properties of calcium phosphate bone substitutes. Biomater. Sci. 6(1), 136–45 (2017)

    Google Scholar 

  30. Wood, F.M.: Skin regeneration: the complexities of translation into clinical practise. Int. J. Biochem. Cell Biol. 56, 133–140 (2014)

    Article  Google Scholar 

  31. Girard, D., Laverdet, B., Buhé, V., Trouillas, M., Ghazi, K., Alexaline, M., u. a.: Biotechnological management of skin burn injuries: challenges and perspectives in wound healing and sensory recovery. Tissue Eng. Part B 23(1), 59–82 (2017)

    Google Scholar 

  32. Stone, L.l.R., Natesan, S., Kowalczewski, C., Mangum, L., Clay, N., Clohessy, R., u. a.: Advancements in regenerative strategies through the continuum of burn care. Front. Pharmacol. 9, 672 (2018)

    Google Scholar 

  33. Michael, S., Sorg, H., Peck, C.-T., Koch, L., Deiwick, A., Chichkov. B., u. a.: Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PloS One 8(3), e57741 (2013)

    Google Scholar 

  34. Pupovac, A., Senturk, B., Griffoni, C., Maniura-Weber, K., Rottmar, M., McArthur, S.L.: Toward immunocompetent 3D skin models. Adv. Healthc. Mater. 7(12), 1701405 (2018)

    Article  Google Scholar 

  35. Du, J., Chen, H., Qing, L., Yang, X., Jia, X.: Biomimetic neural scaffolds: a crucial step towards optimal peripheral nerve regeneration. Biomater. Sci. 6(6), 1299–1311 (2018)

    Article  Google Scholar 

  36. Battiston, B., Titolo, P., Ciclamini, D., Panero, B.: Peripheral nerve defects. Hand Clin. 33(3), 545–550 (2017)

    Article  Google Scholar 

  37. Brunelli, G.A., Battiston, B., Vigasio, A., Brunelli, G., Marocolo, D.: Bridging nerve defects with combined skeletal muscle and vein conduits. Microsurgery 14(4), 247–251 (1993)

    Article  Google Scholar 

  38. Geuna, S., Tos, P., Titolo, P., Ciclamini, D., Beningo, T., Battiston, B.: Update on nerve repair by biological tubulization. J. Brachial. Plex. Peripher. Nerve. Inj. 9(1), 3 (2014)

    Article  Google Scholar 

  39. Mackinnon, S.E., Yee, A.: Nerve Surgery: MediaCenter.thieme.com includes videos online. Thieme, New York 627 S (2015)

    Google Scholar 

  40. Moore, A.M., MacEwan, M., Santosa, K.B., Chenard, K.E., Ray, W.Z., Hunter, D.A., u. a.: Acellular nerve allografts in peripheral nerve regeneration: a comparative study. Muscle Nerve. 44(2), 221–34 (2011)

    Google Scholar 

  41. Whitlock, E.L., Tuffaha, S.H., Luciano, J.P., Yan, Y., Hunter, D.A., Magill, C.K., u. a.: Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve. 39(6), 787–99 (2009)

    Google Scholar 

  42. Radtke, C., Allmeling, C., Waldmann, K.-H., Reimers, K., Thies, K., Schenk, H.C., u. a.: Spider silk constructs enhance axonal regeneration and remyelination in long nerve defects in sheep. Egles C, Herausgeber. PLoS ONE. 6(2), e16990 (2011)

    Google Scholar 

  43. Johnson, P.C., Mikos, A.G., Fisher, J.P., Jansen, J.A.: Strategic directions in tissue engineering. Tissue Eng. 13(12), 2827–2837 (2007)

    Article  Google Scholar 

  44. Lovett, M., Lee, K., Edwards, A., Kaplan, D.L.: Vascularization strategies for tissue engineering. Tissue Eng. Part B Rev. 15(3), 353–370 (2009)

    Article  Google Scholar 

  45. Cherubino, M., Rubin, J.P., Miljkovic, N., Kelmendi-Doko, A., Marra, K.G.: Adipose-derived stem cells for wound healing applications. Ann. Plast. Surg. 66(2), 210–215 (2011)

    Article  Google Scholar 

  46. Kallmeyer, K., André-Lévigne, D., Baquié, M., Krause, K.-H., Pepper, M.S., Pittet-Cuénod, B., u. a.: Fate of systemically and locally administered adipose-derived mesenchymal stromal cells and their effect on wound healing. Stem. Cells Transl. Med. (2019)

    Google Scholar 

  47. Fernandez-Moure, J.S., Van Eps, J.L., Cabrera, F.J., Barbosa, Z., Medrano del Rosal, G., Weiner, B.K., u. a.: Platelet-rich plasma: a biomimetic approach to enhancement of surgical wound healing. J. Surg. Res. 207, 33–44 (2017)

    Google Scholar 

  48. Kapoor, S., Kundu, S.C.: Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater. 31, 17–32 (2016)

    Article  Google Scholar 

  49. Trask, R.S., Williams, H.R., Bond, I.P.: Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir. Biomim. 2(1), 1–9 (2007)

    Google Scholar 

  50. Cerqueira, M.T., Pirraco, R.P., Martins, A.R., Santos, T.C., Reis, R.L., Marques, A.P.: Cell sheet technology-driven re-epithelialization and neovascularization of skin wounds. Acta Biomater. 10(7), 3145–3155 (2014)

    Article  Google Scholar 

  51. Bradbury, E.J., McMahon, S.B.: Spinal cord repair strategies: why do they work? Nat. Rev. Neurosci. 7(8), 644–653 (2006)

    Article  Google Scholar 

  52. Bumbaširević, M., Lesic, A., Palibrk, T., Milovanovic, D., Zoka, M., Kravić-Stevović, T., u. a.: The current state of bionic limbs from the surgeon’s viewpoint. EFORT Open Rev. 5(2), 65–72 (2020)

    Google Scholar 

  53. Zuo, K.J., Olson, J.L.: The evolution of functional hand replacement: from iron prostheses to hand transplantation. Plast. Surg. Oakv. Ont. 22(1), 44–51 (2014)

    Article  Google Scholar 

  54. Tropea, P., Mazzoni, A., Micera, S., Corbo, M.: Giuliano Vanghetti and the innovation of “cineplastic operations”. Neurology. 89(15), 1627–32 (2017)

    Google Scholar 

  55. McLean, L., Scott, R.N.: The early history of myoelectric control of prosthetic limbs (1945–1970). In: Muzumdar, A. (eds) Herausgeber. Powered Upper Limb Prostheses [Internet]. Springer Berlin Heidelberg, Berlin, Heidelberg (2004) [zitiert 23. October 2020]. S. 1–15. Verfügbar unter: http://link.springer.com/10.1007/978-3-642-18812-1_1

  56. Navarro, X., Krueger, T.B., Lago, N., Micera, S., Stieglitz, T., Dario, P.: A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 10(3), 229–258 (2005)

    Article  Google Scholar 

  57. Kuiken, T.A.: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA. 301(6), 619 (2009)

    Google Scholar 

  58. Haines, C.S., Li, N., Spinks, G.M., Aliev, A.E., Di, J., Baughman, R.H.: New twist on artificial muscles. Proc. Natl. Acad. Sci. USA 113(42), 11709–11716 (2016)

    Google Scholar 

  59. Palza, H., Zapata, P.A., Angulo-Pineda, C., Electroactive smart polymers for biomedical applications. Mater. Basel. Switz. 12(2) (2019)

    Google Scholar 

  60. Ortiz-Catalan, M., Hakansson, B., Branemark, R.: An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 6(257), 257re6–257re6 (2014)

    Google Scholar 

  61. Barry, D.T., Leonard, J.A., Gitter, A.J., Ball, R.D.: Acoustic myography as a control signal for an externally powered prosthesis. Arch. Phys. Med. Rehabil. 67(4), 267–269 (1986)

    Google Scholar 

  62. Loeb, G.E., Peck, R.A., Moore, W.H., Hood, K.: BION system for distributed neural prosthetic interfaces. Med. Eng. Phys. 23(1), 9–18 (2001)

    Article  Google Scholar 

  63. Hylsberg Jacobsen, R., Zhang, Q., Skjødeberg Toftegaard, T.: Bioinspired principles for large-scale networked sensor systems: an overview. Sensors. 11(4), 4137–51 (2011)

    Google Scholar 

  64. Dressler, F., Akan, O.B.: A survey on bio-inspired networking. Comput. Netw. 54(6), 881–900 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Weyand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weyand, B., Vogt, P. (2021). Biomimetics and Its Influence in Plastic and Reconstructive Surgery. In: Israelowitz, M., Weyand, B., von Schroeder, H., Vogt, P., Reuter, M., Reimers, K. (eds) Biomimetics and Bionic Applications with Clinical Applications. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-53214-1_3

Download citation

Publish with us

Policies and ethics