Skip to main content

Biological Inspired Image Analysis for Medical Applications

  • Chapter
  • First Online:
Biomimetics and Bionic Applications with Clinical Applications

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

For the analysis of image data—independent of file format, recording mimic and image size—a general model of visual signal processing and interpretation was derived and converted into a bionic algorithm. This algorithm, which is based on the current neurobiological principles of the mammalian light sense, enables contrast enhancement and edge detection independent of illumination as well as implicit noise suppression without recourse to numerically standard image processing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benesch, H.: Der Ursprung des Geistes. München: dtv 1542 (1980)

    Google Scholar 

  2. Reuter, M., Tadjine, H.: Computing with activities III: chunking and aspect integration of complex situations by a new kind of Kohonen Map with Whu-Structures (Whu-SOMs). IFSA. Beijing, VRC (2005)

    Google Scholar 

  3. Reuter, M., Bostelmann, S.: Computing with activities, WHU-structures and a quantisation model of the neural nets. WSOM. Paris, France (2005)

    Google Scholar 

  4. Reuter, M., Bohlmann, S.: Analysing radargrams and sonargrams by biological inspired signal processing methods to optimize the detection of mines and dumped ammunition. In: 10th security research conference, future security 2015, 15–17 September 2015, Berlin, Germany (2015)

    Google Scholar 

  5. Reuter, M., Bohlmann, S.: About new—biological inspired—pattern analysis methods for the pattern recognition in radargrams. In: International radar symposium IRS-2015, 24–26 Juni 2015, Dresden, Germany (2015)

    Google Scholar 

  6. Masland, R.H.: The neuonral organization of the retina. Neuron 76, 266–280 (2012)

    Google Scholar 

  7. Goldstein, E.B.: Wahrnehmungspsychologie. Spektrum Verlag, Heidelberg (2002)

    Google Scholar 

  8. Koester, J., Siegelbaum, A.: Membrane potential and the passive electrical properties of the neuron. In: von Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J. (eds.) Principles of neural science, pp. 126–147. McGraw-Hill Companies (2013)

    Google Scholar 

  9. Koester, J., Siegelbaum, A.: Propagated signaling: the action potential. In: von Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J. (eds.) Principles of neural science, pp. 148–171. McGraw-Hill Companies (2013)

    Google Scholar 

  10. Euler, T., et al.: Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina. Pflugers Arch, 1393–1414 (2009)

    Google Scholar 

  11. Campbell, N.A., Reece, J.B., Markl, J.: Biologie. Spektrum Akademischer Verlag (2003)

    Google Scholar 

  12. Morgan, I.G.: What do Amacrine cells do? Prog. Retin. Res., 193–214 (1991)

    Google Scholar 

  13. Boycott, B.B., Wässle, H.: The morphological types of ganglion cells of the domestic cat’s retina. J. Physiol., 297–419 (1974)

    Google Scholar 

  14. Bohlmann, S.: Neuer Ansatz für die Vorverarbeitung von Bilddaten mittels Umsetzung der retinalen Informationsweitergabe in ein Potential-orientiertes Neuronen-Modell, Diss., TU Clausthal (2016)

    Google Scholar 

  15. Gollisch, T., Meister, M.: Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65, 150–164 (2009)

    Google Scholar 

  16. Mallot, H.A.: Computational vision information processing in perception and visual behaviour. The MIT Press, Cambridge u.a (2000)

    Book  Google Scholar 

  17. Hubel, D.H.: Eye, brain, and vision. (dt.: Auge und Gehirn. Neurologie des Sehens). San Francisco (dt.: Heidelberg), (dt.: Spektrum Akademischer Verlag), 1995 (dt.: 1989)

    Google Scholar 

  18. van Wyk, M., Taylor, W.R., Wässle, H.: Receptive-field properties of ON- and OFF-ganglion cells in the mouse retina. Vis. Neurosci., 293–308 (2009)

    Google Scholar 

  19. Molecular Expressions. http://micro.magnet.fsu.edu/micro/gallery/brain/brain3large.jpg (Zugriff am 8. August 2015)

  20. Molecular Expressions. http://micro.magnet.fsu.edu/micro/gallery/brain/brain4large.jpg (Zugriff am 8. August 2015)

  21. Wikimedia Commons. https://commons.wikimedia.org/wiki/File%3AThorax_CT_pcor_Cut_3D_Volume_Rendering_Haut.jpg (Zugriff am 13. Oktober 2015)

  22. Wikimedia Commons. https://commons.wikimedia.org/wiki/File%3AGruenholzfraktur_−_Unterarmfraktur.jpg (Zugriff am 13. Oktober 2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Reuter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reuter, M., Bohlmann, S. (2021). Biological Inspired Image Analysis for Medical Applications. In: Israelowitz, M., Weyand, B., von Schroeder, H., Vogt, P., Reuter, M., Reimers, K. (eds) Biomimetics and Bionic Applications with Clinical Applications. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-53214-1_14

Download citation

Publish with us

Policies and ethics