Conclusions and Outlook

  • Magdalena ZychEmail author
Part of the Springer Theses book series (Springer Theses)


Quantum effects have been demonstrated with complex systems comprising tens of thousands of atoms [1, 2, 3, 4, 5]. The regime where general relativity affects internal dynamics of such systems might soon allow testing the interplay between quantum mechanics and general relativity.


Quantum Gravity Internal Dynamic Time Dilation Quantum Superposition Galilei Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. Van der Zouw, A. Zeilinger, Wave-particle duality of C60 molecules. Nature 401, 680–682 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger, M. Arndt, Decoherence of matter waves by thermal emission of radiation. Nature 427, 711–714 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    S. Gerlich, S. Eibenberger, M. Tomandl, S. Nimmrichter, K. Hornberger, P.J. Fagan, J. Tüxen, M. Mayor, M. Arndt, Quantum interference of large organic molecules. Nat. Commun. 2, 263 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    S. Eibenberger, S. Gerlich, M. Arndt, M. Mayor, J. Tüxen, Matter-wave interference of particles selected from a molecular library with masses exceeding 10000 amu. Phys. Chem. Chem. Phys. 15, 14696–14700 (2013)CrossRefGoogle Scholar
  5. 5.
    P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, M. Arndt, A universal matter-wave interferometer with optical ionization gratings in the time domain. Nat. Phys. 9, 144–148 (2013)CrossRefGoogle Scholar
  6. 6.
    L. Diósi, Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    R. Penrose, On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    L. Diósi, Intrinsic time-uncertainties and decoherence: comparison of 4 models. Braz. J. Phys. 35, 260265 (2005)CrossRefGoogle Scholar
  9. 9.
    P.C.E. Stamp, Environmental decoherence versus intrinsic decoherence. Phil. Trans. R. Soc. A 370, 4429–4453 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    D. Rideout, T. Jennewein, G. Amelino-Camelia, T.F. Demarie, B.L. Higgins, A. Kempf, A. Kent, R. Laflamme, X. Ma, R.B. Mann et al., Fundamental quantum optics experiments conceivable with satellites-reaching relativistic distances and velocities. Class. Quantum Gravity 29, 224011 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    T. Scheidl, R. Ursin, Space-QUEST: quantum communication using satellites. in Proceedings of International Conference on Space Optical Systems and Applications (ICSOS), Ajaccio, Corsica, France, 2012, pp. 2–4 (2012)Google Scholar
  12. 12.
    T. Scheidl, E. Wille, R. Ursin, Quantum optics experiments using the international space station: a proposal. New J. Phys. 15, 043008 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, P. Villoresi, Experimental satellite quantum communications. Phys. Rev. Lett. 115, 040502 (2014)CrossRefGoogle Scholar
  14. 14.
    A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    C. Gooding, W.G. Unruh, Self-gravitating interferometry and intrinsic decoherence. Phys. Rev. D 90, 044071 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    C. Gooding, W.G. Unruh, Bootstrapping time dilation decoherence. Found. Phys. 45, 1166–1178 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    O. Oreshkov, F.M. Costa, Č. Brukner, Quantum correlations with no causal order. Nat. Commun. 3, 1092 (2012)Google Scholar
  18. 18.
    T. Rudolph, Quantum causality: information insights. Nat. Phys. 8, 860–861 (2012)CrossRefGoogle Scholar
  19. 19.
    Č. Brukner, Quantum causality. Nat. Phys. 10, 259–263 (2014)Google Scholar
  20. 20.
    L. Hardy, Probability theories with dynamic causal structure: a new framework for quantum gravity. arXiv:0509120 [gr-qc]
  21. 21.
    G. Chiribella, G.M. DAriano, P. Perinotti, B. Valiron, Quantum computations without definite causal structure. Phys. Rev. A 88, 022318 (2013)Google Scholar
  22. 22.
    G. Chiribella, Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys. Rev. A 86, 040301 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    T. Colnaghi, G.M.D. Ariano, S. Facchini, P. Perinotti, Quantum computation with programmable connections between gates. Phys. Lett. A 376, 2940–2943 (2012)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    M. Araújo, F. Costa, Č. Brukner, Computational advantage from Quantum-Controlled ordering of gates. Phys. Rev. Lett. 113, 250402 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Engineered Quantum Systems, School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations