Advertisement

Clocks Beyond Classical Space-Time

  • Magdalena ZychEmail author
Chapter
  • 519 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Considering clocks as physical systems in quantum mechanics allows for operationally well-defined scenarios where proper time can display quantum properties—i.e. a single clock can run different proper-times in superposition or two clocks can be entangled in their proper times, as discussed in the preceding chapters. This chapter discusses the regime where quantum theory has to be applied also to the massive systems–which according to General Relativity define casual relations between events.

Keywords

Entangle State Causal Structure Quantum Circuit Bell Inequality Local Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.S. Bell, On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  2. 2.
    S.J. Freedman, J.F. Clauser, Experimental test of local Hidden-Variable theories. Phys. Rev. Lett. 28, 938–941 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    A. Aspect, P. Grangier, G. Roger, Experimental test of local Hidden-Variable theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S.W. Nam, R. Ursin, A. Zeilinger, Bell violation using entangled photons without the fair-sampling assumption. Nature 497, 227–230 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    B. Hensen, H. Bernien, A. Dréau, A. Reiserer, N. Kalb, M. Blok, J. Ruitenberg, R. Vermeulen, R. Schouten, C. Abellán et al., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    M. Giustina, M.A.M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-A. Larsson, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, J. Beyer, T. Gerrits, A.E. Lita, L.K. Shalm, S.W. Nam, T. Scheidl, R. Ursin, B. Wittmann, A. Zeilinger, Significant-Loophole-Free test of Bell’s theorem with Entangled Photons. Phys. Rev. Lett. 115, 250401 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    L.K. Shalm, E. Meyer-Scott, B.G. Christensen, P. Bierhorst, M.A. Wayne, M.J. Stevens, T. Gerrits, S. Glancy, D.R. Hamel, M.S. Allman, K.J. Coakley, S.D. Dyer, C. Hodge, A.E. Lita, V.B. Verma, C. Lambrocco, E. Tortorici, A.L. Migdall, Y. Zhang, D.R. Kumor, W.H. Farr, F. Marsili, M.D. Shaw, J.A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M.W. Mitchell, P.G. Kwiat, J.C. Bienfang, R.P. Mirin, E. Knill, S.W. Nam, Strong Loophole-Free test of local Realism*. Phys. Rev. Lett. 115, 250402 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    A. Einstein, The foundation of the general theory of relativity. Annalen der Physik 40, 284–337 (1916)Google Scholar
  9. 9.
    S.M. Carroll, Spacetime and Geometry. An Introduction to General Relativity, vol. 1 (Addison-Wesley, 2004)Google Scholar
  10. 10.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Macmillan, 1973)Google Scholar
  11. 11.
    S. Weinberg, Gravitation and Cosmology: Principle and Applications of General Theory of Relativity (Wiley, New York, 1972)Google Scholar
  12. 12.
    L. Hardy, Probability theories with dynamic causal structure: a new framework for quantum gravity. arXiv:0509120 [gr-qc]
  13. 13.
    L. Diósi, Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    R. Penrose, On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    G. Chiribella, G.M. D’Ariano, P. Perinotti, B. Valiron, Quantum computations without definite causal structure. Phys. Rev. A 88, 022318 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    G. Chiribella, Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys. Rev. A 86, 040301 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    T. Colnaghi, G.M. D’Ariano, S. Facchini, P. Perinotti, Quantum computation with programmable connections between gates. Phys. Lett. A 376, 2940–2943 (2012)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    M. Araújo, F. Costa, Č. Brukner, Computational advantage from Quantum-Controlled ordering of gates. Phys. Rev. Lett. 113, 250402 (2014)Google Scholar
  19. 19.
    L.M. Procopio, A. Moqanaki, M. Araújo, F. Costa, I.A. Calafell, E.G. Dowd, D.R. Hamel, L.A. Rozema, Č. Brukner, P. Walther, Experimental superposition of orders of quantum gates. Nat. Commun. 6 (2015)Google Scholar
  20. 20.
    O. Oreshkov, F.M. Costa, Č. Brukner, Quantum correlations with no causal order. Nat. Commun. 3, 1092 (2012)Google Scholar
  21. 21.
    M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, and Č. Brukner, Witnessing causal nonseparability, New. J. Phys. 17, 102001 (2015) doi: 10.1088/1367-2630/17/10/102001
  22. 22.
    M.A. Nielsen, Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436–439 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local Hidden-Variable theories. Phys. Rev. Lett. 23, 880–884 (1969)ADSCrossRefGoogle Scholar
  24. 24.
    H. Reeh, S. Schlieder, Bemerkungen zur unitaeraequivalenz von lorentzinvarianten feldern. Il Nuovo Cimento 22, 1051–1068 (1961)ADSCrossRefGoogle Scholar
  25. 25.
    S.J. Summers, R. Werner, Bell’s inequalities and quantum field theory. I. General setting. J. Math. Phys. 28, 2440–2447 (1987)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    S.J. Summers, R. Werner, Bell’s inequalities and quantum field theory. II. Bell’s inequalities are maximally violated in the vacuum. J. Math. Phys. 28, 2448–2456 (1987)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    M. Zych, F. Costa, J.J. Kofler, Č. Brukner, Entanglement between smeared field operators in the Klein-Gordon vacuum. Phys. Rev. D 81, 125019 (2010)Google Scholar
  28. 28.
    J. Ambjoern, A. Goerlich, J. Jurkiewicz, R. Loll, Nonperturbative quantum gravity. Phys. Rep. 519, 127–210 (2012)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    C. Kiefer, Quantum Gravity (General) and Applications (Springer, Berlin, 2009)CrossRefGoogle Scholar
  30. 30.
    P.C.E. Stamp, Environmental decoherence versus intrinsic decoherence. Phil. Trans. R. Soc. A 370, 4429–4453 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics. vol. 3: Quantum Mechanics (Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1965)Google Scholar
  32. 32.
    S.W. Hawking, The unpredictability of quantum gravity. Commun. Math. Phys. 87, 395–415 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Engineered Quantum Systems, School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations