Quantum Formulation of the Einstein Equivalence Principle

  • Magdalena ZychEmail author
Part of the Springer Theses book series (Springer Theses)


Results of the previous chapters rely on the validity of both quantum theory and classical general relativity. However, in order to ensure that gravity indeed can be described in terms of a space-time metric, as in general relativity, dynamics of physical systems has to satisfy certain conditions. These conditions comprise the Einstein Equivalence Principle (EEP). This chapter analyses the EEP for quantum systems. The results show that validity of the metric picture of gravity in classical physics does not imply its validity in quantum mechanics. Very generally, quantised interactions bring in new physical effects, not present in the classical limit, which in turn implies that testing the structure of quantised dynamics is more requiring—conceptually new test are necessary and more parameters need to be constrained.


Quantum Theory Internal Energy Free Fall Test Theory Quantum Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Einstein, Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrb. f. Rad. und Elekt. 4, 411 (1907). Jahrbuch der Radioaktivität 4, 411–462 (1907)Google Scholar
  2. 2.
    J. Philoponus, Corollaries on Place and Void (University Press, Ithaca, New York, 1987). Translated by David FurleyGoogle Scholar
  3. 3.
    C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, 1993)Google Scholar
  4. 4.
    S. Fray, C.A. Diez, T.W. Hänsch, M. Weitz, Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. Phys. Rev. Lett. 93, 240404 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel et al., Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2, 474 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    S. Herrmann, H. Dittus, C. Lämmerzahl et al., Testing the equivalence principle with atomic interferometry. Class. Quantum Gravity 29, 184003 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    D. Schlippert, J. Hartwig, H. Albers, L. Richardson, C. Schubert, A. Roura, W. Schleich, W. Ertmer, E. Rasel, Quantum test of the universality of free fall. Phys. Rev. Lett. 112, 203002 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    S. Schlamminger, K.-Y. Choi, T. Wagner, J. Gundlach, E. Adelberger, Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 041101 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    G. Amelino-Camelia, J. Ellis, N. Mavromatos, D.V. Nanopoulos, S. Sarkar, Tests of quantum gravity from observations of \(\gamma \)-ray bursts. Nature 393, 763–765 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    R. Maartens, K. Koyama, Brane-World gravity. Living Rev. Relativ. 13, 5 (2010). arXiv:1004.3962 [hep-th]
  11. 11.
    T. Damour, Theoretical aspects of the equivalence principle. Class. Quantum Gravity 29, 184001 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    R. Kaltenbaek, G. Hechenblaikner, N. Kiesel, O. Romero-Isart, K.C. Schwab, U. Johann, M. Aspelmeyer, Macroscopic quantum resonators (MAQRO). Exp. Astron. 34, 123–164 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    D. Aguilera, H. Ahlers, B. Battelier, A. Bawamia, A. Bertoldi, R. Bondarescu, K. Bongs, P. Bouyer, C. Braxmaier, L. Cacciapuoti et al., STE-QUEST—test of the universality of free fall using cold atom interferometry. Class. Quantum Gravity 31, 115010 (2014)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    B. Altschul, Q.G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J.D. Tasson, G.M. Tino, P. Tuckey, P. Wolf, Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission. Adv. Space Res. 55, 501–524 (2015). doi: 10.1016/j.asr.2014.07.014
  15. 15.
    J. Williams, S.W. Chiow, N. Yu, H. Müller, Quantum test of the equivalence principle and space-time aboard the international space station. New J. Phys. 18, 025018 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    A. Einstein, Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Annalen der Physik 323, 639–641 (1905)ADSCrossRefGoogle Scholar
  17. 17.
    S. Rainville, J.K. Thompson, E.G. Myers, J.M. Brown, M.S. Dewey, E.G. Kessler, R.D. Deslattes, H.G. Borner, M. Jentschel, P. Mutti, D.E. Pritchard, World year of physics: a direct test of E = mc2. Nature 438, 1096–1097 (2005). doi: 10.1038/4381096a
  18. 18.
    A.P. Lightman, D.L. Lee, Restricted proof that the weak equivalence principle implies the Einstein equivalence principle. Phys. Rev. D8, 364–376 (1973). doi: 10.1103/PhysRevD.8.364
  19. 19.
    D. Colladay, V.A. Kostelecký, \(\rm CPT\) violation and the standard model. Phys. Rev. A55, 6760–6774 (1997). doi: 10.1103/PhysRevD.55.6760
  20. 20.
    C. Lämmerzahl, Quantum tests of the foundations of general relativity. Class. Quantum Gravity 15, 13 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    M.P. Haugan, Energy conservation and the principle of equivalence. Ann. Phys. 118, 156–186 (1979)ADSCrossRefGoogle Scholar
  22. 22.
    M.A. Hohensee, H. Müller, R. Wiringa, Equivalence principle and Bound Kinetic energy. Phys. Rev. Lett. 111, 151102 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    M. Gasperini, Testing the principle of equivalence with neutrino oscillations. Phys. Rev. D 38, 2635 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    R. Mann, U. Sarkar, Test of the equivalence principle from neutrino oscillation experiments. Phys. Rev. Lett. 76, 865 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    K. Nordtvedt Jr., Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity. Phys. Rev. D 11, 245 (1975)ADSCrossRefGoogle Scholar
  26. 26.
    H. Müntinga, H. Ahlers, M. Krutzik, A. Wenzlawski, S. Arnold, D. Becker, K. Bongs, H. Dittus, H. Duncker, N. Gaaloul et al., Interferometry with Bose-Einstein condensates in microgravity. Phys. Rev. Lett. 110, 093602 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    M. Zych, F. Costa, I. Pikovski, Č. Brukner, Quantum interferometric visibility as a witness of general relativistic proper time. Nat. Commun. 2, 505 (2011). doi: 10.1038/ncomms1498
  28. 28.
    I. Pikovski, M. Zych, F. Costa, Č. Brukner, Universal decoherence due to gravitational time dilation. Nat. Phys. 11, 668–672 (2015)CrossRefGoogle Scholar
  29. 29.
    D.M. Greenberger, The role of equivalence in Quantum Mechanics. Ann. Phys. 47, 116–126 (1968). doi: 10.1016/0003-4916(68)90229-7
  30. 30.
    P.C.W. Davies, J. Fang, Quantum theory and the equivalence principle. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 381, 469–478 (1982). doi: 10.1098/rspa.1982.0084
  31. 31.
    L. Viola, R. Onofrio, Testing the equivalence principle through freely falling quantum objects. Phys. Rev. D 55, 455–462 (1997). doi: 10.1103/PhysRevD.55.455
  32. 32.
    C. Lämmerzahl, On the equivalence principle in quantum theory. Gen. Relativ. Gravit. 28, 1043–1070 (1996). doi: 10.1007/BF02113157
  33. 33.
    C. Alvarez, R. Mann, Testing the equivalence principle in the quantum regime. Gen. Relativ. Gravit. 29, 245–250 (1997). doi: 10.1023/A:1010296229642
  34. 34.
    G. Adunas, E. Rodriguez-Milla, D.V. Ahluwalia, Probing quantum violations of the equivalence principle. Gen. Relativ. Gravit. 33, 183–194 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    P.C. Davies, Quantum mechanics and the equivalence principle. Class. Quantum Gravity 21, 2761 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    E. Kajari, N. Harshman, E. Rasel, S. Stenholm, G. SüSSmann, W. Schleich, Inertial and gravitational mass in quantum mechanics. Appl. Phys. B 100, 43–60 (2010). doi: 10.1007/s00340-010-4085-8
  37. 37.
    E. Okon, C. Callender, Does quantum mechanics clash with the equivalence principle and does it matter? Eur. J. Philos. Sci. 1, 133–145 (2011). doi: 10.1007/s13194-010-0009-z
  38. 38.
    A.M. Nobili, D. Lucchesi, M. Crosta, M. Shao, S. Turyshev, R. Peron, G. Catastini, A. Anselmi, G. Zavattini, On the universality of free fall, the equivalence principle, and the gravitational redshift. Am. J. Phys. 81, 527–536 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    R. Colella, A. Overhauser, S. Werner, Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975). doi: 10.1103/PhysRevLett.34.1472
  40. 40.
    U. Bonse, T. Wroblewski, Measurement of neutron quantum interference in noninertial frames. Phys. Rev. Lett. 51, 1401 (1983)ADSCrossRefGoogle Scholar
  41. 41.
    N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space. No. 7 (Cambridge university press, 1984)Google Scholar
  42. 42.
    B. Zieliński, M. Zych, Generalization of the Margolus-Levitin bound. Phys. Rev. A 74, 034301 (2006). doi: 10.1103/PhysRevA.74.034301

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Engineered Quantum Systems, School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations