Advertisement

Decoherence from Time Dilation

  • Magdalena ZychEmail author
Chapter
  • 523 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter generalises the discussion of time dilation effects on “clocks”—quantum systems whose internal states are pure and time evolving (Chap.  5)—to systems in an arbitrary internal state.

Keywords

Gravitational Wave Internal Degree Harmonic Mode Time Dilation Decoherence Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Mandelstam, I. Tamm, The uncertainty relation between energy and time in non-relativistic quantum mechanics, in Selected Papers (Springer, Berlin, Heidelberg, 1991), pp. 115–123Google Scholar
  2. 2.
    G. Fleming, A unitarity bound on the evolution of nonstationary states. Il Nuovo Cimento A 16, 232–240 (1973)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    N. Margolus, L.B. Levitin, The maximum speed of dynamical evolution. Phys. D: Nonlinear Phenom. 120, 188–195 (1998). Proceedings of the Fourth Workshop on Physics and ConsumptionGoogle Scholar
  4. 4.
    P. Kosiński, M. Zych, Elementary proof of the bound on the speed of quantum evolution. Phys. Rev. A 73, 024303 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    B. Zieliński, M. Zych, Generalization of the Margolus-Levitin bound. Phys. Rev. A 74, 034301 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    S. Eibenberger, S. Gerlich, M. Arndt, M. Mayor, J. Tüxen, Matter-wave interference of particles selected from a molecular library with masses exceeding 10000 amu. Phys. Chem. Chem. Phys. 15, 14696–14700 (2013)CrossRefGoogle Scholar
  7. 7.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford Univ, Press, 2002)zbMATHGoogle Scholar
  8. 8.
    M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. Van der Zouw, A. Zeilinger, Wave-particle duality of C60 molecules. Nature 401, 680–682 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    T. Li, S. Kheifets, M.G. Raizen, Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 7, 527–530 (2011)CrossRefGoogle Scholar
  10. 10.
    J. Gieseler, B. Deutsch, R. Quidant, L. Novotny, Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, M. Aspelmeyer, Cavity cooling of an optically levitated submicron particle. Proc. Natl. Acad. Sci. 110, 14180–14185 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, M. Arndt, Cavity cooling of free silicon nanoparticles in high vacuum. Nat. Commun. 4, 2743 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    W. Marshall, C. Simon, R. Penrose, D. Bouwmeester, Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    D. Kleckner, I. Pikovski, E. Jeffrey, L. Ament, E. Eliel, J. Van Den Brink, D. Bouwmeester, Creating and verifying a quantum superposition in a micro-optomechanical system. New J. Phys. 10, 095020 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    B. Pepper, R. Ghobadi, E. Jeffrey, C. Simon, D. Bouwmeester, Optomechanical superpositions via nested interferometry. Phys. Rev. Lett. 109, 023601 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    I. Pikovski, On Quantum Superpositions in an Optomechanical System. Diploma Thesis (Freie Universität Berlin, 2009)Google Scholar
  17. 17.
    E. Joos, H.D. Zeh, The emergence of classical properties through interaction with the environment. Zeitschrift für Physik B Condens. Matter 59, 223–243 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger, M. Arndt, Decoherence of matter waves by thermal emission of radiation. Nature 427, 711–714 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    I. Pikovski, M. Zych, F. Costa, Č. Brukner, Universal decoherence due to gravitational time dilation. Nat. Phys. 11, 668–672 (2015)CrossRefGoogle Scholar
  20. 20.
    R. Colella, A. Overhauser, S. Werner, Observation of Gravitationally Induced Quantum Interference. Phys. Rev. Lett. 34, 1472–1474 (1975)ADSCrossRefGoogle Scholar
  21. 21.
    M. Zawisky, M. Baron, R. Loidl, H. Rauch, Testing the world’s largest monolithic perfect crystal neutron interferometer. Nucl. Instrum. Methods Phys. Res., Sect. A 481, 406–413 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    S. Chu, Laser manipulation of atoms and particles. Science 253, 861–866 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    T. Kovachy, P. Asenbaum, C. Overstreet, C. Donnelly, S. Dickerson, A. Sugarbaker, J. Hogan, M. Kasevich, Quantum superposition at the half-metre scale. Nature 528, 530–533 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    S. Gerlich, S. Eibenberger, M. Tomandl, S. Nimmrichter, K. Hornberger, P.J. Fagan, J. Tüxen, M. Mayor, M. Arndt, Quantum interference of large organic molecules. Nat. Commun. 2, 263 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    E. Joos, H. Zeh, C. Kiefer, D. Giulini, J. Kupsch, I. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, Heidelberg, 2010)zbMATHGoogle Scholar
  26. 26.
    W.H. Zurek, Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    M.A. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Springer, 2007)Google Scholar
  28. 28.
    A.O. Caldeira, A.J. Leggett, Path integral approach to quantum Brownian motion. Phys. A: Stat. Mech. Appl. 121, 587–616 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    A.J. Leggett, S. Chakravarty, A. Dorsey, M.P. Fisher, A. Garg, W. Zwerger, Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987)ADSCrossRefGoogle Scholar
  30. 30.
    T. Yu, J. Eberly, Phonon decoherence of quantum entanglement: robust and fragile states. Phys. Rev. B 66, 193306 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    S. Takahashi, I. Tupitsyn, J. Van Tol, C. Beedle, D. Hendrickson, P. Stamp, Decoherence in crystals of quantum molecular magnets. Nature 476, 76–79 (2011)CrossRefGoogle Scholar
  32. 32.
    M.R. Gallis, G.N. Fleming, Environmental and spontaneous localization. Phys. Rev. A 42, 38 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    N. Prokof’ev, P. Stamp, Theory of the spin bath. Rep. Prog. Phys. 63, 669 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    R. Hanson, V. Dobrovitski, A. Feiguin, O. Gywat, D. Awschalom, Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    T. Carle, H. Briegel, B. Kraus, Decoherence of many-body systems due to many-body interactions. Phys. Rev. A 84, 012105 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    C. Anastopoulos, Quantum theory of nonrelativistic particles interacting with gravity. Phys. Rev. D 54, 1600 (1996)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    B. Lamine, R. Hervé, A. Lambrecht, S. Reynaud, Ultimate decoherence border for matter-wave interferometry. Phys. Rev. Lett. 96, 050405 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    M. Blencowe, Effective field theory approach to gravitationally induced decoherence. Phys. Rev. Lett. 111, 021302 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    C. Anastopoulos, B. Hu, A master equation for gravitational decoherence: probing the textures of spacetime. Class. Quantum Gravity 30, 165007 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    R. Penrose, On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    L. Diósi, Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165 (1989)ADSCrossRefGoogle Scholar
  42. 42.
    P. Pearle, Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A 39, 2277 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    G.C. Ghirardi, P. Pearle, A. Rimini, Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78–89 (1990)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    F. Karolyhazy, Gravitation and quantum mechanics of macroscopic objects. Il Nuovo Cimento A 42, 390–402 (1966)ADSCrossRefGoogle Scholar
  45. 45.
    P.C.E. Stamp, Environmental decoherence versus intrinsic decoherence. Phil. Trans. R. Soc. A 370, 4429–4453 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Engineered Quantum Systems, School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations