Interference of “Clocks”—Experimental Proposals

  • Magdalena ZychEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter describes two proposals for practical realisation of the thought experiment form the previous Chapter, with interfering “clocks” subject to time dilation.


Wave Packet Proper Time Newtonian Limit Time Dilation Gaussian Wave Packet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Peters, K.Y. Chung, S. Chu, High-precision gravity measurements using atom interferometry. Metrologia 38, 25 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    N. Margolus, L.B. Levitin, The maximum speed of dynamical evolution. Phys. D: Nonlinear Phenom. 120, 188–195 (1998). Proceedings of the Fourth Workshop on Physics and ConsumptionGoogle Scholar
  3. 3.
    P. Kosiński, M. Zych, Elementary proof of the bound on the speed of quantum evolution. Phys. Rev. A 73, 024303 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    B. Zieliński, M. Zych, Generalization of the Margolus-Levitin bound. Phys. Rev. A 74, 034301 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    S. Wajima, M. Kasai, T. Futamase, Post-Newtonian effects of gravity on quantum interferometry. Phys. Rev. D 55, 1964 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    R. Colella, A. Overhauser, S. Werner, Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    V.B. Ho, M.J. Morgan, An experiment to test the gravitational Aharonov-Bohm effect. Aust. J. Phys. 47, 245–252Google Scholar
  9. 9.
    C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, 1993)Google Scholar
  10. 10.
    M. Zawisky, M. Baron, R. Loidl, H. Rauch, Testing the world’s largest monolithic perfect crystal neutron interferometer. Nucl. Instrum. Meth. Phys. Res., Sect. A 481, 406–413 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    A. Peters, K.Y. Chung, S. Chu, Measurement of gravitational acceleration by dropping atoms. Nature 400, 849–852 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, Atom interferometers with scalable enclosed area. Phys. Rev. Lett. 102, 240403 (2009)CrossRefGoogle Scholar
  13. 13.
    I. Neder, M. Heiblum, D. Mahalu, V. Umansky, Entanglement, dephasing, and phase recovery via cross-correlation measurements of electrons. Phys. Rev. Lett. 98, 036803 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman, An electronic Mach-Zehnder interferometer. Nature 422, 415–418 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. Van der Zouw, A. Zeilinger, Wave-particle duality of C60 molecules. Nature 401, 680–682 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    S. Gerlich, S. Eibenberger, M. Tomandl, S. Nimmrichter, K. Hornberger, P.J. Fagan, J. Tüxen, M. Mayor, M. Arndt, Quantum interference of large organic molecules. Nat. Commun. 2, 263 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    J.R. Miller, The NHMFL 45-T hybrid magnet system: past, present, and future. IEEE Trans. Appl. Supercond. 13, 1385–1390 (2003)CrossRefGoogle Scholar
  18. 18.
    T. Kovachy, P. Asenbaum, C. Overstreet, C. Donnelly, S. Dickerson, A. Sugarbaker, J. Hogan, M. Kasevich, Quantum superposition at the half-metre scale. Nature 528, 530–533 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    H. Müller, A. Peters, S. Chu, A precision measurement of the gravitational redshift by the interference of matter waves. Nature 463, 926–929 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    S. Dimopoulos, P.W. Graham, J.M. Hogan, M.A. Kasevich, General relativistic effects in atom interferometry. Phys. Rev. D 78, 042003 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    S. Fray, C.A. Diez, T.W. Hänsch, M. Weitz, Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. Phys. Rev. Lett. 93, 240404 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, K.-Y. Chung, Atom-interferometry tests of the isotropy of post-Newtonian gravity. Phys. Rev. Lett. 100, 031101 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    D.M. Greenberger, Theory of particles with variable mass. I. Formalism. J. Math. Phys. 11, 2329–2340 (1970)ADSCrossRefGoogle Scholar
  24. 24.
    D.M. Greenberger, Theory of particles with variable mass. II. Some physical consequences. J. Math. Phys. 11, 2341–2347 (1970)ADSCrossRefGoogle Scholar
  25. 25.
    S. Kudaka, S. Matsumoto, Uncertainty principle for proper time and mass. J. Math. Phys. 40, 1237–1245 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    I.I. Shapiro, Fourth test of general relativity. Phys. Rev. Lett. 13, 789–791 (1964)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, no. 7 (Cambridge university press, 1984)Google Scholar
  28. 28.
    K. Tanaka, How to detect the gravitationally induced phase shift of electromagnetic waves by optical-fiber interferometry. Phys. Rev. Lett. 51, 378 (1983)ADSCrossRefGoogle Scholar
  29. 29.
    H. HŘbel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. LorŘnser, A. Poppe, A. Zeilinger, High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber. Opt. Express 15, 7853–7862 (2007)Google Scholar
  30. 30.
    P.J. Mosley, J.S. Lundeen, B.J. Smith, P. Wasylczyk, A.B. U’Ren, C. Silberhorn, I.A. Walmsley, Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    G. Sansone, L. Poletto, M. Nisoli, High-energy attosecond light sources. Nat. Photonics 5, 655–663 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    L. Gallmann, C. Cirelli, U. Keller, Attosecond science: recent highlights and future trends. Ann. Rev. Phys. Chem. 63, 447–469 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, K. Edamatsu, Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nat. Photonics 3, 95–98 (2009)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    G.-Y. Xiang, B.L. Higgins, D. Berry, H.M. Wiseman, G. Pryde, Entanglement-enhanced measurement of a completely unknown optical phase. Nat. Photonics 5, 43–47 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    R. Ghosh, C. Hong, Z. Ou, L. Mandel, Interference of two photons in parametric down conversion. Phys. Rev. A 34, 3962 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    T. Ralph, G. Milburn, T. Downes, Quantum connectivity of space-time and gravitationally induced decorrelation of entanglement. Phys. Rev. A 79, 022121 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    J. Franson, Bell inequality for position and time. Phys. Rev. Lett. 62, 2205 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    S. Aerts, P. Kwiat, J.-A. Larsson, M. Zukowski, Two-photon Franson-type experiments and local realism. Phys. Rev. Lett. 83, 2872 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    R. Pound, G. Rebka, Apparent weight of photons. Phys. Rev. Lett. 4, 337–341 (1960)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Engineered Quantum Systems, School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations