Skip to main content

Interference of “Clocks”—Experimental Proposals

  • Chapter
  • First Online:
Quantum Systems under Gravitational Time Dilation

Part of the book series: Springer Theses ((Springer Theses))

  • 766 Accesses

Abstract

This chapter describes two proposals for practical realisation of the thought experiment form the previous Chapter, with interfering “clocks” subject to time dilation.

This chapter is based on and contains material from: Quantum interferometric visibility as a witness of general relativistic proper time, M. Zych, F. Costa, I Pikovski, and Č. Brukner, Nature Commun. 2:505 doi:10.1038/ncomms1498 (2011); and General relativistic effects in quantum interference of photons, M. Zych, F. Costa, I. Pikovski, T. C. Ralph, and Č. Brukner, Class. Quant. Grav. 29, 224010 (2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In a typical interferometric scenario, e.g. in atomic fountains, this assumption is satisfied [1].

  2. 2.

    Time evolution of any observable in quantum theory is given by the commutator of the observable with the Hamiltonian. Thus, rate of evolution of any internal observable will be modified by the same factor by which the rest frame Hamiltonian is rescaled.

  3. 3.

    For a bipartite pure quantum state the purity of the reduced density matrix is a measure of entanglement and \(\mathcal V\) also quantifies the purity of the reduced state, see also Eq. (4.15).

  4. 4.

    By a faraway observer is here considered an observer at a large enough radial distance from the mass, such that locally measured times and distances are arbitrary close to the coordinate time and distance—for the Schwarzschild space-time considered in this work \(|g_{\mu \nu }|\rightarrow 1\) for \(r\rightarrow \infty \).

  5. 5.

    Proposal to probe gravitationally induced phase shift of classical light in a laboratory experiment was first formulated in Ref. [28], but has not yet been realised.

  6. 6.

    Defining two wave packets to be distinguishable when the absolute value of the amplitude between them is 1 / n yields \(\mathcal V_n = n^{-(\Delta \tau /t_{n\perp })^2}\) where \(t_{n\perp } = 2 \log (n) \sqrt{\sigma }\) is the corresponding clock’s precision.

  7. 7.

    Note, that classical models of light have already been extensively disproved experimentally, but only in regimes where no effect of GR is present.

  8. 8.

    Note that the Pound-Rebka experiment [39] probed the same aspect of GR: the redshift can be explained as each photon having a gravitational potential energy of \(g h E /c^2\), with \(E=\hbar \nu \). The redshift is then a consequence of the (semi-classical) mass-energy equivalence and energy conservation. However, the quantum nature of the photons was not probed directly in the Pound-Rebka experiment, which is thus still consistent with a classical description of light (more precisely, the experiment is consistent with classical waves on a curved background or with classical particles in a Newtonian potential, see Fig. 5.5 and Chap. 1). Measuring the gravitational phase shift in single photon interference would allow probing this aspect of GR in a quantum regime. In simple terms, it would provide a quantum extension of the Pound-Rebka experiment in the same way as the COW experiment [6] was a quantum extension of Galilei’s free fall experiments.

References

  1. A. Peters, K.Y. Chung, S. Chu, High-precision gravity measurements using atom interferometry. Metrologia 38, 25 (2001)

    Article  ADS  Google Scholar 

  2. N. Margolus, L.B. Levitin, The maximum speed of dynamical evolution. Phys. D: Nonlinear Phenom. 120, 188–195 (1998). Proceedings of the Fourth Workshop on Physics and Consumption

    Google Scholar 

  3. P. Kosiński, M. Zych, Elementary proof of the bound on the speed of quantum evolution. Phys. Rev. A 73, 024303 (2006)

    Article  ADS  Google Scholar 

  4. B. Zieliński, M. Zych, Generalization of the Margolus-Levitin bound. Phys. Rev. A 74, 034301 (2006)

    Article  ADS  Google Scholar 

  5. S. Wajima, M. Kasai, T. Futamase, Post-Newtonian effects of gravity on quantum interferometry. Phys. Rev. D 55, 1964 (1997)

    Article  ADS  Google Scholar 

  6. R. Colella, A. Overhauser, S. Werner, Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975)

    Article  ADS  Google Scholar 

  7. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. V.B. Ho, M.J. Morgan, An experiment to test the gravitational Aharonov-Bohm effect. Aust. J. Phys. 47, 245–252

    Google Scholar 

  9. C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, 1993)

    Google Scholar 

  10. M. Zawisky, M. Baron, R. Loidl, H. Rauch, Testing the world’s largest monolithic perfect crystal neutron interferometer. Nucl. Instrum. Meth. Phys. Res., Sect. A 481, 406–413 (2002)

    Article  ADS  Google Scholar 

  11. A. Peters, K.Y. Chung, S. Chu, Measurement of gravitational acceleration by dropping atoms. Nature 400, 849–852 (1999)

    Article  ADS  Google Scholar 

  12. H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, Atom interferometers with scalable enclosed area. Phys. Rev. Lett. 102, 240403 (2009)

    Article  Google Scholar 

  13. I. Neder, M. Heiblum, D. Mahalu, V. Umansky, Entanglement, dephasing, and phase recovery via cross-correlation measurements of electrons. Phys. Rev. Lett. 98, 036803 (2007)

    Article  ADS  Google Scholar 

  14. Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman, An electronic Mach-Zehnder interferometer. Nature 422, 415–418 (2003)

    Article  ADS  Google Scholar 

  15. M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. Van der Zouw, A. Zeilinger, Wave-particle duality of C60 molecules. Nature 401, 680–682 (1999)

    Article  ADS  Google Scholar 

  16. S. Gerlich, S. Eibenberger, M. Tomandl, S. Nimmrichter, K. Hornberger, P.J. Fagan, J. Tüxen, M. Mayor, M. Arndt, Quantum interference of large organic molecules. Nat. Commun. 2, 263 (2011)

    Article  ADS  Google Scholar 

  17. J.R. Miller, The NHMFL 45-T hybrid magnet system: past, present, and future. IEEE Trans. Appl. Supercond. 13, 1385–1390 (2003)

    Article  Google Scholar 

  18. T. Kovachy, P. Asenbaum, C. Overstreet, C. Donnelly, S. Dickerson, A. Sugarbaker, J. Hogan, M. Kasevich, Quantum superposition at the half-metre scale. Nature 528, 530–533 (2015)

    Article  ADS  Google Scholar 

  19. H. Müller, A. Peters, S. Chu, A precision measurement of the gravitational redshift by the interference of matter waves. Nature 463, 926–929 (2010)

    Article  ADS  Google Scholar 

  20. S. Dimopoulos, P.W. Graham, J.M. Hogan, M.A. Kasevich, General relativistic effects in atom interferometry. Phys. Rev. D 78, 042003 (2008)

    Article  ADS  Google Scholar 

  21. S. Fray, C.A. Diez, T.W. Hänsch, M. Weitz, Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. Phys. Rev. Lett. 93, 240404 (2004)

    Article  ADS  Google Scholar 

  22. H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, K.-Y. Chung, Atom-interferometry tests of the isotropy of post-Newtonian gravity. Phys. Rev. Lett. 100, 031101 (2008)

    Article  ADS  Google Scholar 

  23. D.M. Greenberger, Theory of particles with variable mass. I. Formalism. J. Math. Phys. 11, 2329–2340 (1970)

    Article  ADS  Google Scholar 

  24. D.M. Greenberger, Theory of particles with variable mass. II. Some physical consequences. J. Math. Phys. 11, 2341–2347 (1970)

    Article  ADS  Google Scholar 

  25. S. Kudaka, S. Matsumoto, Uncertainty principle for proper time and mass. J. Math. Phys. 40, 1237–1245 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. I.I. Shapiro, Fourth test of general relativity. Phys. Rev. Lett. 13, 789–791 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  27. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, no. 7 (Cambridge university press, 1984)

    Google Scholar 

  28. K. Tanaka, How to detect the gravitationally induced phase shift of electromagnetic waves by optical-fiber interferometry. Phys. Rev. Lett. 51, 378 (1983)

    Article  ADS  Google Scholar 

  29. H. HŘbel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. LorŘnser, A. Poppe, A. Zeilinger, High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber. Opt. Express 15, 7853–7862 (2007)

    Google Scholar 

  30. P.J. Mosley, J.S. Lundeen, B.J. Smith, P. Wasylczyk, A.B. U’Ren, C. Silberhorn, I.A. Walmsley, Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008)

    Article  ADS  Google Scholar 

  31. G. Sansone, L. Poletto, M. Nisoli, High-energy attosecond light sources. Nat. Photonics 5, 655–663 (2011)

    Article  ADS  Google Scholar 

  32. L. Gallmann, C. Cirelli, U. Keller, Attosecond science: recent highlights and future trends. Ann. Rev. Phys. Chem. 63, 447–469 (2012)

    Article  ADS  Google Scholar 

  33. N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, K. Edamatsu, Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nat. Photonics 3, 95–98 (2009)

    Article  ADS  MATH  Google Scholar 

  34. G.-Y. Xiang, B.L. Higgins, D. Berry, H.M. Wiseman, G. Pryde, Entanglement-enhanced measurement of a completely unknown optical phase. Nat. Photonics 5, 43–47 (2011)

    Article  ADS  Google Scholar 

  35. R. Ghosh, C. Hong, Z. Ou, L. Mandel, Interference of two photons in parametric down conversion. Phys. Rev. A 34, 3962 (1986)

    Article  ADS  Google Scholar 

  36. T. Ralph, G. Milburn, T. Downes, Quantum connectivity of space-time and gravitationally induced decorrelation of entanglement. Phys. Rev. A 79, 022121 (2009)

    Article  ADS  Google Scholar 

  37. J. Franson, Bell inequality for position and time. Phys. Rev. Lett. 62, 2205 (1989)

    Article  ADS  Google Scholar 

  38. S. Aerts, P. Kwiat, J.-A. Larsson, M. Zukowski, Two-photon Franson-type experiments and local realism. Phys. Rev. Lett. 83, 2872 (1999)

    Article  ADS  Google Scholar 

  39. R. Pound, G. Rebka, Apparent weight of photons. Phys. Rev. Lett. 4, 337–341 (1960)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Zych .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zych, M. (2017). Interference of “Clocks”—Experimental Proposals. In: Quantum Systems under Gravitational Time Dilation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-53192-2_5

Download citation

Publish with us

Policies and ethics