Quantum Clocks in General Relativity

  • Magdalena ZychEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter derives and discusses quantisation of the relativistic “clock” Hamiltonian, providing dynamics of low energy quantum systems with internal degrees of freedom in a fixed background.


  1. 1.
    S. Weinberg, The Quantum Theory of Fields, vol. 2. (Cambridge University Press, 1996)Google Scholar
  2. 2.
    N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space. No. 7. (Cambridge university press, 1984)Google Scholar
  3. 3.
    C. Laemmerzahl, A Hamilton operator for quantum optics in gravitational fields. Phys. Lett. A 203, 12–17 (1995)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Rainville, J.K. Thompson, E.G. Myers, J.M. Brown, M.S. Dewey, E.G. Kessler, R.D. Deslattes, H.G. Borner, M. Jentschel, P. Mutti, D.E. Pritchard, World year of physics: a direct test of E = mc\(^2\). Nature 438, 1096–1097 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    V. Bargmann, On unitary ray representations of continuous groups. Ann. Math. 59, 1–46 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J.-M. Levy-Leblond, Galilei group and nonrelativistic quantum mechanics. J. Math. Phys. 4, 776–788 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    D. Giulini, On Galilei invariance in quantum mechanics and the Bargmann superselection rule. Ann. Phys. 249, 222–235 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    D.M. Greenberger, Inadequacy of the usual Galilean transformation in quantum mechanics. Phys. Rev. Lett. 87, 100405 (2001)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    L. Mandelstam, I. Tamm, The uncertainty relation between energy and time in non-relativistic quantum mechanics, in Selected Papers (Springer Berlin Heidelberg, 1991), pp. 115–123Google Scholar
  10. 10.
    G. Fleming, A unitarity bound on the evolution of nonstationary states. Il Nuovo Cimento A 16, 232–240 (1973)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    N. Margolus, L.B. Levitin, The maximum speed of dynamical evolution. Phys. D: Nonlinear Phenom.120, 188–195 (1998). Proceedings of the Fourth Workshop on Physics and ConsumptionGoogle Scholar
  12. 12.
    B. Zieliński, M. Zych, Generalization of the Margolus-Levitin bound. Phys. Rev. A 74, 034301 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    B.-G. Englert, Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154–2157 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Engineered Quantum Systems, School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations