• Magdalena ZychEmail author
Part of the Springer Theses book series (Springer Theses)


The understanding of nature has been radically changed by the advent of quantum mechanics and general relativity.


Quantum Theory Gravitational Potential World Line Atomic Clock Time Dilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.S. Bell, On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  2. 2.
    J. Bell, SpeakabLe and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (Cambridge University Press, 2004)Google Scholar
  3. 3.
    R.A. Bertlmann, A. Zeilinger, Quantum (un) Speakables: from Bell to Quantum Information (Springer Science and Business Media, 2013)Google Scholar
  4. 4.
    A. Einstein, The foundation of the general theory of relativity. Ann. Phys. 40, 284–337 (1916)Google Scholar
  5. 5.
    S.M. Carroll, Spacetime and Geometry. An Introduction to General Relativity, vol 1 (Addison-Wesley, 2004)Google Scholar
  6. 6.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Macmillan, 1973)Google Scholar
  7. 7.
    S. Weinberg, Gravitation and Cosmology: Principle and Applications of General Theory of Relativity (Wiley, New York, 1972)Google Scholar
  8. 8.
    A. Einstein, L. Infeld, The Evolution of Physics: the Growth of Ideas from Early Concepts to Relativity and Quanta (An Essandess paperback, Simon and Schuster, 1961)zbMATHGoogle Scholar
  9. 9.
    H. Brown, Physical Relativity:space-time Structure from a Dynamical Perspective: Space-time Structure from a Dynamical Perspective, Oxford Scholarship Online. PhiloSophy Module (Clarendon Press, 2005)Google Scholar
  10. 10.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics. Quantum Mechanics, vol 3 (Addison-Wesley, Inc., Reading, Mass.-London, 1965q)Google Scholar
  11. 11.
    A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    D. Bohm, Quantum Theory (Courier Corporation, 1951)Google Scholar
  13. 13.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)ADSCrossRefGoogle Scholar
  14. 14.
    S.J. Freedman, J.F. Clauser, Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972)ADSCrossRefGoogle Scholar
  15. 15.
    A. Aspect, P. Grangier, G. Roger, Experimental test of local hidden-variable theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981)ADSCrossRefGoogle Scholar
  16. 16.
    B. Hensen, H. Bernien, A. Dréau, A. Reiserer, N. Kalb, M. Blok, J. Ruitenberg, R. Vermeulen, R. Schouten, C. Abellán et al., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    M. Giustina, M.A.M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-A. Larsson, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, J. Beyer, T. Gerrits, A.E. Lita, L.K. Shalm, S.W. Nam, T. Scheidl, R. Ursin, B. Wittmann, A. Zeilinger, Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    L.K. Shalm, E. Meyer-Scott, B.G. Christensen, P. Bierhorst, M.A. Wayne, M.J. Stevens, T. Gerrits, S. Glancy, D.R. Hamel, M.S. Allman, K.J. Coakley, S.D. Dyer, C. Hodge, A.E. Lita, V.B. Verma, C. Lambrocco, E. Tortorici, A.L. Migdall, Y. Zhang, D.R. Kumor, W.H. Farr, F. Marsili, M.D. Shaw, J.A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M.W. Mitchell, P.G. Kwiat, J.C. Bienfang, R.P. Mirin, E. Knill, S.W. Nam, Strong loophole-free test of local realism*. Phys. Rev. Lett. 115, 250402 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    B. Dakic Č. Brukner, Quantum Theory and Beyond: Is Entanglement Special?, in Deep Beauty—Understanding the Quantum World through Mathematical Innovation, ed. by H. Halvorson, (American Institute of Physics, 2011) pp. 365–392Google Scholar
  20. 20.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. (Cambridge University Press, New York, NY, USA, 2011)zbMATHGoogle Scholar
  21. 21.
    H. Dingle, The case against special relativity. Nature 216, 119–122 (1967)ADSCrossRefGoogle Scholar
  22. 22.
    W.H. McCrea, Why the special theory of relativity is correct. Nature 216, 122–124 (1967)ADSCrossRefGoogle Scholar
  23. 23.
    F.J.M. Farley, Is the special theory right or wrong?: experimental verifications of the theory of relativity. Nature 217, 17–18 (1968)ADSCrossRefGoogle Scholar
  24. 24.
    J. Terrell, R.K. Adair, R.W. Williams, F.C. Michel, D.A. Ljung, D. Greenberger, J.P. Matthesen, V. Korenman, T.W. Noonan, R. Price, V. Sandberg, P.H. Polak, S.R. de Groot, G. Lüders, J. G. Fletcher, M. Sachs, Atom interferometers and the gravitational redshift. Phys. Today 25, 9 (1972)Google Scholar
  25. 25.
    D.M. Greenberger, The reality of the twin paradox effect. Am. J. Phys. 40, 750–754 (1972)ADSCrossRefGoogle Scholar
  26. 26.
    J.C. Hafele, R.E. Keating, Around-the-world atomic clocks: predicted relativistic time gains. Science 177, 166–168 (1972)ADSCrossRefGoogle Scholar
  27. 27.
    J.C. Hafele, R.E. Keating, Around-the-world atomic clocks: Observed relativistic time gains. Science 177, 168–170 (1972)ADSCrossRefGoogle Scholar
  28. 28.
    C.-W. Chou, D. Hume, T. Rosenband, D. Wineland, Optical clocks and relativity. Science 329, 1630–1633 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    T.L. Nicholson, S.L. Campbell, R.B. Hutson, G.E. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, J. Ye, Systematic evaluation of an atomic clock at 2\(\times 10^{-18}\) total uncertainty. Nat. Comm. 6, 6896 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    S. Weinberg, The Quantum Theory of Fields, vol. 2 (Cambridge University Press, 1996)Google Scholar
  31. 31.
    D. Colosi, C. Rovelli, What is a particle? Class. Quantum Gravity 47, 245–252 (2009)MathSciNetzbMATHGoogle Scholar
  32. 32.
    S.W. Hawking, Black hole explosions. Nature 248, 30–31 (1974)ADSCrossRefGoogle Scholar
  33. 33.
    S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    D. Harlow, Jerusalem Lectures on Black Holes and Quantum Information, arXiv:1409.1231 [hep-th]
  35. 35.
    S.D. Mathur, The information paradox: a pedagogical introduction. Class. Quantum Gravity 26, 224001 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    C. Kiefer, Quantum Gravity (General) and Applications (Springer, Berlin Heidelberg, 2009)CrossRefGoogle Scholar
  37. 37.
    K. Konno, M. Kasai, General relativistic effects of gravity in quantum mechanics: a case of ultrarelativistic, spin 1/2 particles. Progress Theoret. Phys. 100, 1145–1157 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    S. Dimopoulos, P.W. Graham, J.M. Hogan, M.A. Kasevich, General relativistic effects in atom interferometry. Phys. Rev. D 78, 042003 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    C.M. Will, The confrontation between general relativity and experiment. Living Rev. Relativ. 17, 4 (2014), arXiv:1403.7377 [bibgr-qc]
  40. 40.
    R. Colella, A. Overhauser, S. Werner, Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975)ADSCrossRefGoogle Scholar
  41. 41.
    S. Chu, Nobel lecture: the manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    A. Peters, K.Y. Chung, S. Chu, Measurement of gravitational acceleration by dropping atoms. Nature 400, 849–852 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    S. Fray, C.A. Diez, T.W. Hänsch, M. Weitz, Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. Phys. Rev. Lett. 93, 240404 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, K.-Y. Chung, Atom-interferometry tests of the isotropy of post-Newtonian gravity. Phys. Rev. Lett. 100, 031101 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G. Tino, Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518–521 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    G.M. Tino, Testing gravity with atom interferometry, in Proceedings of the International School of Physics—Enrico Fermi, eds. by G.M. Tino, M.A. Kasevich (2014) pp. 457–493Google Scholar
  47. 47.
    V.V. Nesvizhevsky, H.G. Börner, A.K. Petukhov, H. Abele, S. Baeßler, F.J. Rueß, T. Stöferle, A. Westphal, A.M. Gagarski, G.A. Petrov et al., Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297–299 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    T. Jenke, P. Geltenbort, H. Lemmel, H. Abele, Realization of a gravity-resonance-spectroscopy technique. Nature Phys. 7, 468–472 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    R. Pound, G. Rebka, Apparent weight of photons. Phys. Rev. Lett. 4, 337–341 (1960)ADSCrossRefGoogle Scholar
  50. 50.
    I.I. Shapiro, Fourth test of general relativity. Phys. Rev. Lett. 13, 789–791 (1964)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    I.I. Shapiro, M.E. Ash, R.P. Ingalls, W.B. Smith, D.B. Campbell, R.B. Dyce, R.F. Jurgens, G.H. Pettengill, Fourth test of general relativity: new radar result. Phys. Rev. Lett. 26, 1132–1135 (1971)ADSCrossRefGoogle Scholar
  52. 52.
    R.B. Mann, T.C. Ralph, Relativistic quantum information. Class. Quantum Gravity 29 (2012)Google Scholar
  53. 53.
    D. Rideout, T. Jennewein, G. Amelino-Camelia, T.F. Demarie, B.L. Higgins, A. Kempf, A. Kent, R. Laflamme, X. Ma, R.B. Mann et al., Fundamental quantum optics experiments conceivable with satellites-reaching relativistic distances and velocities. Class. Quantum Gravity 29, 224011 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    L. Diósi, Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165 (1989)ADSCrossRefGoogle Scholar
  55. 55.
    R. Penrose, On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    L. Diósi, Intrinsic time-uncertainties and decoherence: comparison of 4 models. Braz. J. Phys. 35, 260–265 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    P.C.E. Stamp, Environmental decoherence versus intrinsic decoherence. Phil. Trans. R. Soc. A 370, 4429–4453 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Engineered Quantum Systems, School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations