Skip to main content

Neuronutrition: An Emerging Concept

  • Chapter
  • First Online:
  • 1500 Accesses

Abstract

The use of nutrients for the purposes improving health and preventing and treating diseases has been the focus of attention for a very long time not only in the scientific area but also in the general public. Although the efforts were generally unfruitful from the perspective of neurologic disorders, the interest to the subject is escalating at an enormous rate, primarily as a combined result of commercial marketing strategies and demand from patients/public for the alleviation of neurologic problems where conventional treatments do not provide satisfactory results in general. This chapter, expectedly, cannot cover every aspect of neuronutrition. We will primarily summarize the evidence regarding the mostly studied neuro-nutraceuticals, including antioxidant vitamins, vitamin D, polyphenolic compounds, and cellular energy modulators. We will also provide information on neuronutritional aspects of stroke, Alzheimer’s disease and other dementias, Parkinson’s disease, amyotrophic lateral sclerosis, and migraine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Williams RJ, Mohanakumar KP, Beart PM (2015) Neuro-nutraceuticals: the path to brain health via nourishment is not so distant. Neurochem Int 89:1–6

    Article  CAS  PubMed  Google Scholar 

  2. Williams RJ, Mohanakumar KP, Beart PM (2016) Neuro-nutraceuticals: further insights into their promise for brain health. Neurochem Int 95:1–3

    Article  CAS  PubMed  Google Scholar 

  3. Goszcz K, Deakin SJ, Duthie GG, Stewart D, Leslie SJ, Megson IL (2015) Antioxidants in cardiovascular therapy: panacea or false hope? Front Cardiovasc Med 2:29

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sargeant LA, Khaw KT, Bingham S et al (2001) Fruit and vegetable intake and population glycosylated haemoglobin levels: the EPIC-Norfolk study. Eur J Clin Nutr 55(5):342–348

    Article  CAS  PubMed  Google Scholar 

  5. Chen GC, Lu DB, Pang Z, Liu QF (2013) Vitamin C intake, circulating vitamin C and risk of stroke: a meta-analysis of prospective studies. J Am Heart Assoc 2(6):e000329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Myung SK, Ju W, Cho B et al (2013) Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ 346:f10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2012) Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 3:CD007176

    Google Scholar 

  8. Bowman GL (2012) Ascorbic acid, cognitive function, and Alzheimer’s disease: a current review and future direction. Biofactors 38(2):114–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang SM, Hernan MA, Chen H, Spiegelman D, Willett WC, Ascherio A (2002) Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology 59(8):1161–1169

    Article  CAS  PubMed  Google Scholar 

  10. Nagayama H, Hamamoto M, Ueda M, Nito C, Yamaguchi H, Katayama Y (2004) The effect of ascorbic acid on the pharmacokinetics of levodopa in elderly patients with Parkinson disease. Clin Neuropharmacol 27(6):270–273

    Article  CAS  PubMed  Google Scholar 

  11. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ (1996) Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347(9004):781–786

    Article  CAS  PubMed  Google Scholar 

  12. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342(3):154–160

    Article  CAS  PubMed  Google Scholar 

  13. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico (1999) Lancet 354(9177):447–55

    Google Scholar 

  14. Sesso HD, Buring JE, Christen WG et al (2008) Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA 300(18):2123–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee IM, Cook NR, Gaziano JM et al (2005) Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women’s Health Study: a randomized controlled trial. JAMA 294(1):56–65

    Article  CAS  PubMed  Google Scholar 

  16. Bin Q, Hu X, Cao Y, Gao F (2011) The role of vitamin E (tocopherol) supplementation in the prevention of stroke. A meta-analysis of 13 randomised controlled trials. Thromb Haemost 105(4):579–585

    Article  CAS  PubMed  Google Scholar 

  17. Sano M, Ernesto C, Thomas RG et al (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med 336(17):1216–1222

    Article  CAS  PubMed  Google Scholar 

  18. Dysken MW, Sano M, Asthana S et al (2014) Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA 311(1):33–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Farina N, Isaac MG, Clark AR, Rusted J, Tabet N (2012) Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst Rev 11:CD002854

    PubMed  Google Scholar 

  20. Etminan M, Gill SS, Samii A (2005) Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol 4(6):362–365

    Article  CAS  PubMed  Google Scholar 

  21. Weber CA, Ernst ME (2006) Antioxidants, supplements, and Parkinson’s disease. Ann Pharmacother 40(5):935–938

    Article  CAS  PubMed  Google Scholar 

  22. Parkinson Study G (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 328(3):176–183

    Article  Google Scholar 

  23. Suchowersky O, Gronseth G, Perlmutter J et al (2006) Practice parameter: neuroprotective strategies and alternative therapies for Parkinson disease (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 66(7):976–982

    Article  CAS  PubMed  Google Scholar 

  24. Ascherio A, Weisskopf MG, O’Reilly EJ et al (2005) Vitamin E intake and risk of amyotrophic lateral sclerosis. Ann Neurol 57(1):104–110

    Article  CAS  PubMed  Google Scholar 

  25. Michal Freedman D, Kuncl RW, Weinstein SJ, Malila N, Virtamo J, Albanes D (2013) Vitamin E serum levels and controlled supplementation and risk of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 14(4):246–251

    Article  CAS  PubMed  Google Scholar 

  26. Veldink JH, Kalmijn S, Groeneveld GJ et al (2007) Intake of polyunsaturated fatty acids and vitamin E reduces the risk of developing amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 78(4):367–371

    Article  CAS  PubMed  Google Scholar 

  27. Wang H, O’Reilly EJ, Weisskopf MG et al (2011) Vitamin E intake and risk of amyotrophic lateral sclerosis: a pooled analysis of data from 5 prospective cohort studies. Am J Epidemiol 173(6):595–602

    Article  PubMed  PubMed Central  Google Scholar 

  28. Orrell RW, Lane RJ, Ross M (2008) A systematic review of antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease. Amyotroph Lateral Scler 9(4):195–211

    Article  CAS  PubMed  Google Scholar 

  29. Graf M, Ecker D, Horowski R et al (2005) High dose vitamin E therapy in amyotrophic lateral sclerosis as add-on therapy to riluzole: results of a placebo-controlled double-blind study. J Neural Transm (Vienna) 112(5):649–660

    Article  CAS  Google Scholar 

  30. Desnuelle C, Dib M, Garrel C, Favier A (2001) A double-blind, placebo-controlled randomized clinical trial of alpha-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS riluzole-tocopherol Study Group. Amyotroph Lateral Scler Other Motor Neuron Disord 2(1):9–18

    Article  CAS  PubMed  Google Scholar 

  31. Shaik MM, Gan SH (2015) Vitamin supplementation as possible prophylactic treatment against migraine with aura and menstrual migraine. Biomed Res Int 2015:469529

    PubMed  PubMed Central  Google Scholar 

  32. Ziaei S, Kazemnejad A, Sedighi A (2009) The effect of vitamin E on the treatment of menstrual migraine. Med Sci Monit 15(1):CR16–CR19

    CAS  PubMed  Google Scholar 

  33. Giordano P, Scicchitano P, Locorotondo M et al (2012) Carotenoids and cardiovascular risk. Curr Pharm Des 18(34):5577–5589

    Article  CAS  PubMed  Google Scholar 

  34. Kardinaal AF, Kok FJ, Ringstad J et al (1993) Antioxidants in adipose tissue and risk of myocardial infarction: the EURAMIC Study. Lancet 342(8884):1379–1384

    Article  CAS  PubMed  Google Scholar 

  35. Karppi J, Laukkanen JA, Makikallio TH, Kurl S (2012) Low serum lycopene and beta-carotene increase risk of acute myocardial infarction in men. Eur J Pub Health 22(6):835–840

    Article  Google Scholar 

  36. Schrag M, Mueller C, Zabel M et al (2013) Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Neurobiol Dis 59:100–110

    Article  CAS  PubMed  Google Scholar 

  37. Ono K, Yamada M (2012) Vitamin A and Alzheimer’s disease. Geriatr Gerontol Int 12(2):180–188

    Article  PubMed  Google Scholar 

  38. Takeda A, Nyssen OP, Syed A, Jansen E, Bueno-de-Mesquita B, Gallo V (2014) Vitamin A and carotenoids and the risk of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology 42(1):25–38

    Article  PubMed  Google Scholar 

  39. Fitzgerald KC, O’Reilly EJ, Fondell E et al (2013) Intakes of vitamin C and carotenoids and risk of amyotrophic lateral sclerosis: pooled results from 5 cohort studies. Ann Neurol 73(2):236–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jin Y, Oh K, Oh SI, Baek H, Kim SH, Park Y (2014) Dietary intake of fruits and beta-carotene is negatively associated with amyotrophic lateral sclerosis risk in Koreans: a case-control study. Nutr Neurosci 17(3):104–108

    Article  CAS  PubMed  Google Scholar 

  41. Muller L, Caris-Veyrat C, Lowe G, Bohm V (2015) Lycopene and its antioxidant role in the prevention of cardiovascular diseases—a critical review. Crit Rev Food Sci Nutr 56:1868–1879

    Article  CAS  Google Scholar 

  42. Kohlmeier L, Kark JD, Gomez-Gracia E et al (1997) Lycopene and myocardial infarction risk in the EURAMIC Study. Am J Epidemiol 146(8):618–626

    Article  CAS  PubMed  Google Scholar 

  43. Sesso HD, Buring JE, Norkus EP, Gaziano JM (2005) Plasma lycopene, other carotenoids, and retinol and the risk of cardiovascular disease in men. Am J Clin Nutr 81(5):990–997

    CAS  PubMed  Google Scholar 

  44. Karppi J, Laukkanen JA, Sivenius J, Ronkainen K, Kurl S (2012) Serum lycopene decreases the risk of stroke in men: a population-based follow-up study. Neurology 79(15):1540–1547

    Article  CAS  PubMed  Google Scholar 

  45. Min JY, Min KB (2014) Serum lycopene, lutein and zeaxanthin, and the risk of Alzheimer’s disease mortality in older adults. Dement Geriatr Cogn Disord 37(3–4):246–256

    Article  CAS  PubMed  Google Scholar 

  46. Obulesu M, Dowlathabad MR, Bramhachari PV (2011) Carotenoids and Alzheimer’s disease: an insight into therapeutic role of retinoids in animal models. Neurochem Int 59(5):535–541

    Article  CAS  PubMed  Google Scholar 

  47. Chen W, Mao L, Xing H et al (2015) Lycopene attenuates Abeta1-42 secretion and its toxicity in human cell and Caenorhabditis elegans models of Alzheimer disease. Neurosci Lett 608:28–33

    Article  CAS  PubMed  Google Scholar 

  48. Bun S, Ikejima C, Kida J et al (2015) A combination of supplements may reduce the risk of Alzheimer’s disease in elderly Japanese with normal cognition. J Alzheimers Dis 45(1):15–25

    CAS  PubMed  Google Scholar 

  49. Jimenez-Jimenez FJ, Molina JA, Fernandez-Calle P et al (1993) Serum levels of beta-carotene and other carotenoids in Parkinson’s disease. Neurosci Lett 157(1):103–106

    Article  CAS  PubMed  Google Scholar 

  50. Prema A, Janakiraman U, Manivasagam T, Thenmozhi AJ (2015) Neuroprotective effect of lycopene against MPTP induced experimental Parkinson’s disease in mice. Neurosci Lett 599:12–19

    Article  CAS  PubMed  Google Scholar 

  51. Malouf R, Grimley EJ (2003) The effect of vitamin B6 on cognition. Cochrane Database Syst Rev 4:CD004393

    Google Scholar 

  52. Murakami K, Miyake Y, Sasaki S et al (2010) Dietary intake of folate, vitamin B6, vitamin B12 and riboflavin and risk of Parkinson’s disease: a case-control study in Japan. Br J Nutr 104(5):757–764

    Article  CAS  PubMed  Google Scholar 

  53. Shen L (2015) Associations between B vitamins and Parkinson’s disease. Nutrients 27(9):7197–7208

    Article  CAS  Google Scholar 

  54. de Lau LM, Koudstaal PJ, Witteman JC, Hofman A, Breteler MM (2006) Dietary folate, vitamin B12, and vitamin B6 and the risk of Parkinson disease. Neurology 67(2):315–318

    Article  PubMed  CAS  Google Scholar 

  55. Mars H (1974) Levodopa, carbidopa, and pyridoxine in Parkinson disease. Metabolic interactions. Arch Neurol 30(6):444–447

    Article  CAS  PubMed  Google Scholar 

  56. Rosenson RS, Kang DS (2016) Overview of homocysteine. www.uptodate.com. Accessed 9 June 2016

  57. Homocysteine SC (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288(16):2015–2022

    Article  Google Scholar 

  58. Humphrey LL, Fu R, Rogers K, Freeman M, Helfand M (2008) Homocysteine level and coronary heart disease incidence: a systematic review and meta-analysis. Mayo Clin Proc 83(11):1203–1212

    Article  PubMed  Google Scholar 

  59. Marti-Carvajal AJ, Sola I, Lathyris D (2015) Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev 1:CD006612

    PubMed  Google Scholar 

  60. Toole JF, Malinow MR, Chambless LE et al (2004) Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA 291(5):565–575

    Article  CAS  PubMed  Google Scholar 

  61. Group VTS (2010) B vitamins in patients with recent transient ischaemic attack or stroke in the VITAmins TO Prevent Stroke (VITATOPS) trial: a randomised, double-blind, parallel, placebo-controlled trial. Lancet Neurol 9(9):855–865

    Article  CAS  Google Scholar 

  62. Mecocci P, Tinarelli C, Schulz RJ, Polidori MC (2014) Nutraceuticals in cognitive impairment and Alzheimer’s disease. Front Pharmacol 5:147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Araujo JR, Martel F, Borges N, Araujo JM, Keating E (2015) Folates and aging: role in mild cognitive impairment, dementia and depression. Ageing Res Rev 22:9–19

    Article  CAS  PubMed  Google Scholar 

  64. Morris MS, Selhub J, Jacques PF (2012) Vitamin B-12 and folate status in relation to decline in scores on the mini-mental state examination in the Framingham Heart Study. J Am Geriatr Soc 60(8):1457–1464

    Article  PubMed  PubMed Central  Google Scholar 

  65. Haan MN, Miller JW, Aiello AE et al (2007) Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging. Am J Clin Nutr 85(2):511–517

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Moorthy D, Peter I, Scott TM et al (2012) Status of vitamins B-12 and B-6 but not of folate, homocysteine, and the methylenetetrahydrofolate reductase C677T polymorphism are associated with impaired cognition and depression in adults. J Nutr 142(8):1554–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kado DM, Karlamangla AS, Huang MH et al (2005) Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur Studies of Successful Aging. Am J Med 118(2):161–167

    Article  CAS  PubMed  Google Scholar 

  68. Clarke R, Bennett D, Parish S et al (2014) Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am J Clin Nutr 100(2):657–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ford AH, Almeida OP (2012) Effect of homocysteine lowering treatment on cognitive function: a systematic review and meta-analysis of randomized controlled trials. J Alzheimers Dis 29(1):133–149

    CAS  PubMed  Google Scholar 

  70. Li MM, Yu JT, Wang HF et al (2014) Efficacy of vitamins B supplementation on mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. Curr Alzheimer Res 11(9):844–852

    CAS  PubMed  Google Scholar 

  71. Douaud G, Refsum H, de Jager CA et al (2013) Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci U S A 110(23):9523–9528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li JG, Chu J, Barrero C, Merali S, Pratico D (2014) Homocysteine exacerbates beta-amyloid pathology, tau pathology, and cognitive deficit in a mouse model of Alzheimer disease with plaques and tangles. Ann Neurol 75(6):851–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hu XW, Qin SM, Li D, Hu LF, Liu CF (2013) Elevated homocysteine levels in levodopa-treated idiopathic Parkinson’s disease: a meta-analysis. Acta Neurol Scand 128(2):73–82

    Article  CAS  PubMed  Google Scholar 

  74. Zoccolella S, Simone IL, Lamberti P et al (2008) Elevated plasma homocysteine levels in patients with amyotrophic lateral sclerosis. Neurology 70(3):222–225

    Article  CAS  PubMed  Google Scholar 

  75. Valentino F, Bivona G, Butera D et al (2010) Elevated cerebrospinal fluid and plasma homocysteine levels in ALS. Eur J Neurol 17(1):84–89

    Article  CAS  PubMed  Google Scholar 

  76. Bedlack RS, Joyce N, Carter GT, Paganoni S, Karam C (2015) Complementary and alternative therapies in amyotrophic lateral sclerosis. Neurol Clin 33(4):909–936

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pazirandeh S, Lo CW, Burns DL (2016) Overview of water-soluble vitamins. UpToDate®. http://www.uptodate.com. Accessed 6 June 2016

  78. Schoenen J, Jacquy J, Lenaerts M (1998) Effectiveness of high-dose riboflavin in migraine prophylaxis. A randomized controlled trial. Neurology 50(2):466–470

    Article  CAS  PubMed  Google Scholar 

  79. Tepper SJ (2015) Nutraceutical and other modalities for the treatment of headache. Continuum (Minneap Minn) 21(4 Headache):1018–1031

    Google Scholar 

  80. Gaul C, Diener HC, Danesch U, Migravent Study G (2015) Improvement of migraine symptoms with a proprietary supplement containing riboflavin, magnesium and Q10: a randomized, placebo-controlled, double-blind, multicenter trial. J Headache Pain 16:516

    Article  PubMed  CAS  Google Scholar 

  81. Bruijn J, Duivenvoorden H, Passchier J, Locher H, Dijkstra N, Arts WF (2010) Medium-dose riboflavin as a prophylactic agent in children with migraine: a preliminary placebo-controlled, randomised, double-blind, cross-over trial. Cephalalgia 30(12):1426–1434

    Article  PubMed  Google Scholar 

  82. MacLennan SC, Wade FM, Forrest KM, Ratanayake PD, Fagan E, Antony J (2008) High-dose riboflavin for migraine prophylaxis in children: a double-blind, randomized, placebo-controlled trial. J Child Neurol 23(11):1300–1304

    Article  PubMed  Google Scholar 

  83. Lukasova M, Hanson J, Tunaru S, Offermanns S (2011) Nicotinic acid (niacin): new lipid-independent mechanisms of action and therapeutic potentials. Trends Pharmacol Sci 32(12):700–707

    Article  CAS  PubMed  Google Scholar 

  84. Morris MC, Evans DA, Bienias JL et al (2004) Dietary niacin and the risk of incident Alzheimer’s disease and of cognitive decline. J Neurol Neurosurg Psychiatry 75(8):1093–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Morris MCED, Schneider JA, Tangney CC, Bienias JL, Aggarwal NT (2006) Dietary folate and vitamins B-12 and B-6 not associated with incident Alzheimer’s disease. J Alzheimers Dis 9(4):435–443

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pazirandeh S, Burns DL (2016) Overview of vitamin D. In: Motil KJ, Drezner MK, Mulder JE (eds) Topic 2033 Version 19.0. Up To Date, Waltham. Accessed 22 June 2016

    Google Scholar 

  87. Gillespie LD, Robertson MC, Gillespie WJ et al (2012) Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev 9:CD007146

    Google Scholar 

  88. Beaudart C, Buckinx F, Rabenda V et al (2014) The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab 99(11):4336–4345

    Article  CAS  PubMed  Google Scholar 

  89. Sanders KM, Stuart AL, Williamson EJ et al (2010) Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA 303(18):1815–1822

    Article  CAS  PubMed  Google Scholar 

  90. Bouillon R (2016) Vitamin D and extraskeletal health. In: Rosen CJ, Mulder JE (eds) Topic 13915 Version 34.0. Up To Date, Waltham. Accessed 22 June 2016

    Google Scholar 

  91. Wang L, Song Y, Manson JE et al (2012) Circulating 25-hydroxy-vitamin D and risk of cardiovascular disease: a meta-analysis of prospective studies. Circ Cardiovasc Qual Outcomes 5(6):819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Beveridge LA, Struthers AD, Khan F et al (2015) Effect of vitamin D supplementation on blood pressure: a systematic review and meta-analysis incorporating individual patient data. JAMA Intern Med 175(5):745–754

    Article  PubMed  Google Scholar 

  93. Ford JA, MacLennan GS, Avenell A et al (2014) Cardiovascular disease and vitamin D supplementation: trial analysis, systematic review, and meta-analysis. Am J Clin Nutr 100(3):746–755

    Article  CAS  PubMed  Google Scholar 

  94. Amer M, Qayyum R (2013) Relationship between 25-hydroxyvitamin D and all-cause and cardiovascular disease mortality. Am J Med 126(6):509–514

    Article  CAS  PubMed  Google Scholar 

  95. Li M, Chen P, Li J, Chu R, Xie D, Wang H (2014) Review: the impacts of circulating 25-hydroxyvitamin D levels on cancer patient outcomes: a systematic review and meta-analysis. J Clin Endocrinol Metab 99(7):2327–2336

    Article  CAS  PubMed  Google Scholar 

  96. Elamin MB, Abu Elnour NO, Elamin KB et al (2011) Vitamin D and cardiovascular outcomes: a systematic review and meta-analysis. J Clin Endocrinol Metab 96(7):1931–1942

    Article  CAS  PubMed  Google Scholar 

  97. Annweiler C, Karras SN, Anagnostis P, Beauchet O (2014) Vitamin D supplements: a novel therapeutic approach for Alzheimer patients. Front Pharmacol 5:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Balion C, Griffith LE, Strifler L et al (2012) Vitamin D, cognition, and dementia: a systematic review and meta-analysis. Neurology 79(13):1397–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chao J, Leung Y, Wang M, Chang RC (2012) Nutraceuticals and their preventive or potential therapeutic value in Parkinson’s disease. Nutr Rev 70(7):373–386

    Article  PubMed  Google Scholar 

  100. Knekt P, Kilkkinen A, Rissanen H, Marniemi J, Saaksjarvi K, Heliovaara M (2010) Serum vitamin D and the risk of Parkinson disease. Arch Neurol 67(7):808–811

    Article  PubMed  PubMed Central  Google Scholar 

  101. Camu W, Tremblier B, Plassot C et al (2014) Vitamin D confers protection to motoneurons and is a prognostic factor of amyotrophic lateral sclerosis. Neurobiol Aging 35(5):1198–1205

    Article  CAS  PubMed  Google Scholar 

  102. Karam C, Barrett MJ, Imperato T, MacGowan DJ, Scelsa S (2013) Vitamin D deficiency and its supplementation in patients with amyotrophic lateral sclerosis. J Clin Neurosci 20(11):1550–1553

    Article  CAS  PubMed  Google Scholar 

  103. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A (2006) Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296(23):2832–2838

    Article  CAS  PubMed  Google Scholar 

  104. Gowda U, Mutowo MP, Smith BJ, Wluka AE, Renzaho AM (2015) Vitamin D supplementation to reduce depression in adults: meta-analysis of randomized controlled trials. Nutrition 31(3):421–429

    Article  CAS  PubMed  Google Scholar 

  105. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    CAS  PubMed  Google Scholar 

  106. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2(12):1231–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lopez MS, Dempsey RJ, Vemuganti R (2015) Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem Int 89:75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ghosh D, Scheepens A (2009) Vascular action of polyphenols. Mol Nutr Food Res 53(3):322–331

    Article  CAS  PubMed  Google Scholar 

  109. Geleijnse JM, Launer LJ, Van der Kuip DA, Hofman A, Witteman JC (2002) Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr 75(5):880–886

    CAS  PubMed  Google Scholar 

  110. Hooper L, Kroon PA, Rimm EB et al (2008) Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr 88(1):38–50

    CAS  PubMed  Google Scholar 

  111. Gronbaek M, Deis A, Sorensen TI, Becker U, Schnohr P, Jensen G (1995) Mortality associated with moderate intakes of wine, beer, or spirits. BMJ 310(6988):1165–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Narita K, Hisamoto M, Okuda T, Takeda S (2011) Differential neuroprotective activity of two different grape seed extracts. PLoS One 6(1):e14575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Potter PE (2013) Curcumin: a natural substance with potential efficacy in Alzheimer’s disease. J Exp Pharmacol 5:23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280(45):37377–37382

    Article  CAS  PubMed  Google Scholar 

  115. Rendeiro C, Rhodes JS, Spencer JP (2015) The mechanisms of action of flavonoids in the brain: direct versus indirect effects. Neurochem Int 89:126–139

    Article  CAS  PubMed  Google Scholar 

  116. Ataie A, Shadifar M, Ataee R (2016) Polyphenolic antioxidants and neuronal regeneration. Basic Clin Neurosci 7(2):81–90

    PubMed  PubMed Central  Google Scholar 

  117. Libro R, Giacoppo S, Soundara Rajan T, Bramanti P, Mazzon E (2016) Natural phytochemicals in the treatment and prevention of dementia: an overview. Molecules 21(4):518

    Article  PubMed  CAS  Google Scholar 

  118. Devore EE, Kang JH, Breteler MM, Grodstein F (2012) Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol 72(1):135–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Baum L, Lam CW, Cheung SK et al (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 28(1):110–113

    Article  PubMed  Google Scholar 

  120. Henderson VW, St John JA, Hodis HN et al (2012) Long-term soy isoflavone supplementation and cognition in women: a randomized, controlled trial. Neurology 78(23):1841–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Agim ZS, Cannon JR (2015) Dietary factors in the etiology of Parkinson’s disease. Biomed Res Int 2015:672838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Dutta D, Mohanakumar KP (2015) Tea and Parkinson’s disease: constituents of tea synergize with anti-Parkinsonian drugs to provide better therapeutic benefits. Neurochem Int 89:181–190

    Article  CAS  PubMed  Google Scholar 

  123. Magalingam KB, Radhakrishnan AK, Haleagrahara N (2015) Protective mechanisms of flavonoids in Parkinson’s disease. Oxidative Med Cell Longev 2015:314560

    Article  Google Scholar 

  124. Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A (2012) Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology 78(15):1138–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Saaksjarvi K, Knekt P, Lundqvist A et al (2013) A cohort study on diet and the risk of Parkinson’s disease: the role of food groups and diet quality. Br J Nutr 109(2):329–337

    Article  CAS  PubMed  Google Scholar 

  126. Lei E, Vacy K, Boon WC (2016) Fatty acids and their therapeutic potential in neurological disorders. Neurochem Int 95:75–84

    Article  CAS  PubMed  Google Scholar 

  127. Winkler EA, Nishida Y, Sagare AP et al (2015) GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci 18(4):521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Van der Auwera I, Wera S, Van Leuven F, Henderson ST (2005) A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutr Metab (Lond) 2:28

    Article  CAS  Google Scholar 

  129. Seidl SE, Santiago JA, Bilyk H, Potashkin JA (2014) The emerging role of nutrition in Parkinson’s disease. Front Aging Neurosci 6:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Green KN, Martinez-Coria H, Khashwji H et al (2007) Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. J Neurosci 27(16):4385–4395

    Article  CAS  PubMed  Google Scholar 

  131. Otaegui-Arrazola A, Amiano P, Elbusto A, Urdaneta E, Martinez-Lage P (2014) Diet, cognition, and Alzheimer’s disease: food for thought. Eur J Nutr 53(1):1–23

    Article  CAS  PubMed  Google Scholar 

  132. Grimm MO, Zimmer VC, Lehmann J, Grimm HS, Hartmann T (2013) The impact of cholesterol, DHA, and sphingolipids on Alzheimer’s disease. Biomed Res Int 2013:814390

    Article  PubMed  CAS  Google Scholar 

  133. Zhang Y, Chen J, Qiu J, Li Y, Wang J, Jiao J (2016) Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies. Am J Clin Nutr 103(2):330–340

    Article  CAS  PubMed  Google Scholar 

  134. Wu S, Ding Y, Wu F, Li R, Hou J, Mao P (2015) Omega-3 fatty acids intake and risks of dementia and Alzheimer’s disease: a meta-analysis. Neurosci Biobehav Rev 48:1–9

    Article  PubMed  CAS  Google Scholar 

  135. Yurko-Mauro K, McCarthy D, Rom D et al (2010) Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement 6(6):456–464

    Article  CAS  PubMed  Google Scholar 

  136. Daiello LA, Gongvatana A, Dunsiger S, Cohen RA, Ott BR (2015) Alzheimer’s disease neuroimaging I. Association of fish oil supplement use with preservation of brain volume and cognitive function. Alzheimers Dement 11(2):226–235

    Article  PubMed  Google Scholar 

  137. Gharami K, Das M, Das S (2015) Essential role of docosahexaenoic acid towards development of a smarter brain. Neurochem Int 89:51–62

    Article  CAS  PubMed  Google Scholar 

  138. van de Rest O, Geleijnse JM, Kok FJ et al (2008) Effect of fish oil on cognitive performance in older subjects: a randomized, controlled trial. Neurology 71(6):430–438

    Article  PubMed  CAS  Google Scholar 

  139. Burckhardt M, Herke M, Wustmann T, Watzke S, Langer G, Fink A (2016) Omega-3 fatty acids for the treatment of dementia. Cochrane Database Syst Rev 4:CD009002

    PubMed  Google Scholar 

  140. Chiu CC, Su KP, Cheng TC et al (2008) The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study. Prog Neuro-Psychopharmacol Biol Psychiatry 32(6):1538–1544

    Article  CAS  Google Scholar 

  141. Phillips MA, Childs CE, Calder PC, Rogers PJ (2015) No effect of omega-3 fatty acid supplementation on cognition and mood in individuals with cognitive impairment and probable Alzheimer’s disease: a randomised controlled trial. Int J Mol Sci 16(10):24600–24613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Quinn JF, Raman R, Thomas RG et al (2010) Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA 304(17):1903–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Freund-Levi Y, Eriksdotter-Jonhagen M, Cederholm T et al (2006) Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study. A randomized double-blind trial. Arch Neurol 63(10):1402–1408

    Article  PubMed  Google Scholar 

  144. Freund Levi Y, Vedin I, Cederholm T et al (2014) Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer’s disease: the OmegAD study. J Intern Med 275(4):428–436

    Article  CAS  PubMed  Google Scholar 

  145. Rijpma A, Meulenbroek O, van Hees AM et al (2015) Effects of Souvenaid on plasma micronutrient levels and fatty acid profiles in mild and mild-to-moderate Alzheimer’s disease. Alzheimers Res Ther 7(1):51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Bousquet M, Saint-Pierre M, Julien C, Salem N Jr, Cicchetti F, Calon F (2008) Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. FASEB J 22(4):1213–1225

    Article  CAS  PubMed  Google Scholar 

  147. Mythri RB, Joshi AK, Mukunda M, Bharath S (2015) Nutraceuticals and other natural products in Parkinson’s disease therapy: focus on clinical applications. In: Bioactive nutraceuticals and dietary supplements in neurological and brain disease (edited by Watson RR and Preedy VR, chapter 44) Academic Press, London, pp 421–431 (http://dx.doi.org/10.1016/B978-0-12-411462-3.00044-8)

  148. de Lau LM, Bornebroek M, Witteman JC, Hofman A, Koudstaal PJ, Breteler MM (2005) Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study. Neurology 64(12):2040–2045

    Article  PubMed  CAS  Google Scholar 

  149. Yip PK, Pizzasegola C, Gladman S et al (2013) The omega-3 fatty acid eicosapentaenoic acid accelerates disease progression in a model of amyotrophic lateral sclerosis. PLoS One 8(4):e61626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fitzgerald KC, O’Reilly EJ, Falcone GJ et al (2014) Dietary omega-3 polyunsaturated fatty acid intake and risk for amyotrophic lateral sclerosis. JAMA Neurol 71(9):1102–1110

    Article  PubMed  PubMed Central  Google Scholar 

  151. Mozaffarian D, Wu JH (2011) Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol 58(20):2047–2067

    Article  CAS  PubMed  Google Scholar 

  152. Nicolson GL (2014) Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Integr Med (Encinitas) 13(4):35–43

    Google Scholar 

  153. Maczurek A, Hager K, Kenklies M et al (2008) Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer’s disease. Adv Drug Deliv Rev 60(13–14):1463–1470

    Article  CAS  PubMed  Google Scholar 

  154. Shinto L, Quinn J, Montine T et al (2014) A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease. J Alzheimers Dis 38(1):111–120

    CAS  PubMed  Google Scholar 

  155. Fava A, Pirritano D, Plastino M et al (2013) The effect of lipoic acid therapy on cognitive functioning in patients with Alzheimer’s disease. J Neurodegener Dis 2013:454253

    PubMed  PubMed Central  Google Scholar 

  156. Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM (2009) Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta 1790(10):1149–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gulcin I (2006) Antioxidant and antiradical activities of L-carnitine. Life Sci 78(8):803–811

    Article  PubMed  CAS  Google Scholar 

  158. Hudson S, Tabet N (2003) Acetyl-L-carnitine for dementia. Cochrane Database Syst Rev 2:CD003158

    Google Scholar 

  159. Sinicropi MS, Rovito N, Carocci A, Genchi G (2012) Acetyl-L-carnitine in Parkinson’s disease. In: Dushanova J (ed) Mechanisms in Parkinson’s disease—models and treatment. InTech China, pp 365–392 (DOI: 10.5772/19668. Available from: https://www.intechopen.com/books/mechanisms-in-parkinson-s-diseasemodels-and-treatments/acetyl-l-carnitine-in-parkinson-s-disease)

  160. Tarighat Esfanjani A, Mahdavi R, Ebrahimi Mameghani M, Talebi M, Nikniaz Z, Safaiyan A (2012) The effects of magnesium, L-carnitine, and concurrent magnesium-L-carnitine supplementation in migraine prophylaxis. Biol Trace Elem Res 150(1–3):42–48

    Article  PubMed  CAS  Google Scholar 

  161. Kira Y, Nishikawa M, Ochi A, Sato E, Inoue M (2006) L-carnitine suppresses the onset of neuromuscular degeneration and increases the life span of mice with familial amyotrophic lateral sclerosis. Brain Res 1070(1):206–214

    Article  CAS  PubMed  Google Scholar 

  162. Beghi E, Pupillo E, Bonito V et al (2013) Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for ALS. Amyotroph Lateral Scler Frontotemporal Degener 14(5–6):397–405

    Article  CAS  PubMed  Google Scholar 

  163. Li S, Li Q, Li Y, Li L, Tian H, Sun X (2015) Acetyl-L-carnitine in the treatment of peripheral neuropathic pain: a systematic review and meta-analysis of randomized controlled trials. PLoS One 10(3):e0119479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Yang X, Zhang Y, Xu H et al (2016) Neuroprotection of coenzyme Q10 in neurodegenerative diseases. Curr Top Med Chem 16(8):858–866

    Article  CAS  PubMed  Google Scholar 

  165. Galasko DR, Peskind E, Clark CM et al (2012) Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol 69(7):836–841

    Article  PubMed  PubMed Central  Google Scholar 

  166. Storch A, Jost WH, Vieregge P et al (2007) Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. Arch Neurol 64(7):938–944

    Article  PubMed  Google Scholar 

  167. Liu J, Wang LN, Zhan SY, Xia Y (2012) WITHDRAWN: coenzyme Q10 for Parkinson’s disease. Cochrane Database Syst Rev 5:CD008150

    Google Scholar 

  168. Parkinson Study Group QEI, Beal MF, Oakes D et al (2014) A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol 71(5):543–552

    Article  Google Scholar 

  169. Huntington Study G (2001) A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington’s disease. Neurology 57(3):397–404

    Google Scholar 

  170. Kaufmann P, Thompson JL, Levy G et al (2009) Phase II trial of CoQ10 for ALS finds insufficient evidence to justify phase III. Ann Neurol 66(2):235–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Stocker R, Pollicino C, Gay CA et al (2006) Neither plasma coenzyme Q10 concentration, nor its decline during pravastatin therapy, is linked to recurrent cardiovascular disease events: a prospective case-control study from the LIPID study. Atherosclerosis 187(1):198–204

    Article  CAS  PubMed  Google Scholar 

  172. Banach M, Serban C, Sahebkar A et al (2015) Effects of coenzyme Q10 on statin-induced myopathy: a meta-analysis of randomized controlled trials. Mayo Clin Proc 90(1):24–34

    Article  CAS  PubMed  Google Scholar 

  173. Sandor PS, Di Clemente L, Coppola G et al (2005) Efficacy of coenzyme Q10 in migraine prophylaxis: a randomized controlled trial. Neurology 64(4):713–715

    Article  CAS  PubMed  Google Scholar 

  174. Hershey AD, Powers SW, Vockell AL et al (2007) Coenzyme Q10 deficiency and response to supplementation in pediatric and adolescent migraine. Headache 47(1):73–80

    Article  PubMed  Google Scholar 

  175. Birkmayer JG (1996) Coenzyme nicotinamide adenine dinucleotide: new therapeutic approach for improving dementia of the Alzheimer type. Ann Clin Lab Sci 26(1):1–9

    CAS  PubMed  Google Scholar 

  176. Rainer M, Kraxberger E, Haushofer M, Mucke HA, Jellinger KA (2000) No evidence for cognitive improvement from oral nicotinamide adenine dinucleotide (NADH) in dementia. J Neural Transm (Vienna) 107(12):1475–1481

    Article  CAS  Google Scholar 

  177. Demarin V, Podobnik SS, Storga-Tomic D, Kay G (2004) Treatment of Alzheimer’s disease with stabilized oral nicotinamide adenine dinucleotide: a randomized, double-blind study. Drugs Exp Clin Res 30(1):27–33

    CAS  PubMed  Google Scholar 

  178. Birkmayer W, Birkmayer JG, Vrecko K, Paletta B (1990) The clinical benefit of NADH as stimulator of endogenous L-dopa biosynthesis in Parkinsonian patients. Adv Neurol 53:545–549

    CAS  PubMed  Google Scholar 

  179. Birkmayer JG, Vrecko C, Volc D, Birkmayer W (1993) Nicotinamide adenine dinucleotide (NADH)—a new therapeutic approach to Parkinson’s disease. Comparison of oral and parenteral application. Acta Neurol Scand Suppl 146:32–35

    CAS  PubMed  Google Scholar 

  180. Bender A, Koch W, Elstner M et al (2006) Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial. Neurology 67(7):1262–1264

    Article  CAS  PubMed  Google Scholar 

  181. Xiao Y, Luo M, Luo H, Wang J (2014) Creatine for Parkinson’s disease. Cochrane Database Syst Rev 6:CD009646

    Google Scholar 

  182. Writing Group for the NETiPDI, Kieburtz K, Tilley BC et al (2015) Effect of creatine monohydrate on clinical progression in patients with Parkinson disease: a randomized clinical trial. JAMA 313(6):584–593

    Article  CAS  Google Scholar 

  183. Pastula DM, Moore DH, Bedlack RS (2012) Creatine for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev 12:CD005225

    PubMed  Google Scholar 

  184. Grober U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7(9):8199–8226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Liu G, Weinger JG, Lu ZL, Xue F, Sadeghpour S (2015) Efficacy and safety of MMFS-01, a synapse density enhancer, for treating cognitive impairment in older adults: a randomized, double-blind. Placebo-controlled trial. J Alzheimers Dis 49(4):971–990

    Article  PubMed Central  CAS  Google Scholar 

  186. Ochiai T, Shimeno H, Mishima K et al (2007) Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim Biophys Acta 1770(4):578–584

    Article  CAS  PubMed  Google Scholar 

  187. Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, Tsatsakis AM (2015) The effects of Crocus sativus (saffron) and its constituents on nervous system: a review. Avicenna J Phytomed 5(5):376–391

    PubMed  PubMed Central  Google Scholar 

  188. Purushothuman S, Nandasena C, Peoples CL et al (2013) Saffron pre-treatment offers neuroprotection to Nigral and retinal dopaminergic cells of MPTP-Treated mice. J Parkinsons Dis 3(1):77–83

    CAS  PubMed  Google Scholar 

  189. Ahmad AS, Ansari MA, Ahmad M et al (2005) Neuroprotection by crocetin in a hemi-Parkinsonian rat model. Pharmacol Biochem Behav 81(4):805–813

    Article  CAS  PubMed  Google Scholar 

  190. Akhondzadeh S, Shafiee Sabet M, Harirchian MH et al (2010) A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology 207(4):637–643

    Article  CAS  PubMed  Google Scholar 

  191. Ottum MS, Mistry AM (2015) Advanced glycation end-products: modifiable environmental factors profoundly mediate insulin resistance. J Clin Biochem Nutr 57(1):1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Boldyrev AA, Stvolinsky SL, Fedorova TN, Suslina ZA (2010) Carnosine as a natural antioxidant and geroprotector: from molecular mechanisms to clinical trials. Rejuvenation Res 13(2–3):156–158

    Article  CAS  PubMed  Google Scholar 

  193. Hipkiss AR (2014) Aging risk factors and Parkinson’s disease: contrasting roles of common dietary constituents. Neurobiol Aging 35(6):1469–1472

    Article  CAS  PubMed  Google Scholar 

  194. Ried K, Toben C, Fakler P (2013) Effect of garlic on serum lipids: an updated meta-analysis. Nutr Rev 71(5):282–299

    Article  PubMed  Google Scholar 

  195. Stabler SN, Tejani AM, Huynh F, Fowkes C (2012) Garlic for the prevention of cardiovascular morbidity and mortality in hypertensive patients. Cochrane Database Syst Rev 8:CD007653

    Google Scholar 

  196. Jull AB, Ni Mhurchu C, Bennett DA, Dunshea-Mooij CA, Rodgers A (2008) Chitosan for overweight or obesity. Cochrane Database Syst Rev 3:CD003892

    Google Scholar 

  197. Sood N, Baker WL, Coleman CI (2008) Effect of glucomannan on plasma lipid and glucose concentrations, body weight, and blood pressure: systematic review and meta-analysis. Am J Clin Nutr 88(4):1167–1175

    CAS  PubMed  Google Scholar 

  198. Estruch R, Ros E, Salas-Salvado J et al (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368(14):1279–1290

    Article  CAS  PubMed  Google Scholar 

  199. Larsson SC, Wallin A, Wolk A (2016) Dietary approaches to stop hypertension diet and incidence of stroke: results from 2 prospective cohorts. Stroke 47(4):986–990

    Article  CAS  PubMed  Google Scholar 

  200. McEwen BJ (2015) The influence of herbal medicine on platelet function and coagulation: a narrative review. Semin Thromb Hemost 41(3):300–314

    Article  CAS  PubMed  Google Scholar 

  201. Stanger MJ, Thompson LA, Young AJ, Lieberman HR (2012) Anticoagulant activity of select dietary supplements. Nutr Rev 70(2):107–117

    Article  PubMed  Google Scholar 

  202. Waldron B, Moll S (2013) Natural supplements, herbs, vitamins and food: do some prevent blood clots? http://files.www.clotconnect.org/patients/resources/brochures/Natural_supplements-Brochure_May_2013.pdf. Accessed 29 Aug 2016

  203. Vilahur G, Badimon L (2013) Antiplatelet properties of natural products. Vasc Pharmacol 59(3–4):67–75

    Article  CAS  Google Scholar 

  204. Barbagallo CM, Cefalu AB, Noto D, Averna MR (2015) Role of nutraceuticals in hypolipidemic therapy. Front Cardiovasc Med 2:22

    Article  PubMed  PubMed Central  Google Scholar 

  205. Sahebkar A, Serban MC, Gluba-Brzozka A et al (2016) Lipid-modifying effects of nutraceuticals: an evidence-based approach. Nutrition 32:1179–1192

    Article  CAS  PubMed  Google Scholar 

  206. Gylling H, Plat J, Turley S et al (2014) Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 232(2):346–360

    Article  CAS  PubMed  Google Scholar 

  207. Walz CP, Barry AR, Koshman SL (2016) Omega-3 polyunsaturated fatty acid supplementation in the prevention of cardiovascular disease. Can Pharm J (Ott) 149(3):166–173

    Article  Google Scholar 

  208. Cicero AF, Colletti A (2015) Nutraceuticals and blood pressure control: results from clinical trials and meta-analyses. High Blood Press Cardiovasc Prev 22(3):203–213

    Article  CAS  PubMed  Google Scholar 

  209. Rajapakse NW, Mattson DL (2009) Role of L-arginine in nitric oxide production in health and hypertension. Clin Exp Pharmacol Physiol 36(3):249–255

    Article  CAS  PubMed  Google Scholar 

  210. Ho MJ, Li EC, Wright JM (2016) Blood pressure lowering efficacy of coenzyme Q10 for primary hypertension. Cochrane Database Syst Rev 3:CD007435

    PubMed  Google Scholar 

  211. Grossman E, Laudon M, Zisapel N (2011) Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials. Vasc Health Risk Manag 7:577–584

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Juraschek SP, Guallar E, Appel LJ, Miller ER 3rd (2012) Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials. Am J Clin Nutr 95(5):1079–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Liu XX, Li SH, Chen JZ et al (2012) Effect of soy isoflavones on blood pressure: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 22(6):463–470

    Article  CAS  PubMed  Google Scholar 

  214. Jumar A, Schmieder RE (2016) Cocoa flavanol cardiovascular effects beyond blood pressure reduction. J Clin Hypertens (Greenwich) 18(4):352–358

    Article  CAS  Google Scholar 

  215. Siervo M, Lara J, Ogbonmwan I, Mathers JC (2013) Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: a systematic review and meta-analysis. J Nutr 143(6):818–826

    Article  CAS  PubMed  Google Scholar 

  216. Ried K, Frank OR, Stocks NP, Fakler P, Sullivan T (2008) Effect of garlic on blood pressure: a systematic review and meta-analysis. BMC Cardiovasc Disord 8:13

    Article  PubMed  PubMed Central  Google Scholar 

  217. Mirmiran P, Bahadoran Z, Azizi F (2014) Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: a review. World J Diabetes 5(3):267–281

    Article  PubMed  PubMed Central  Google Scholar 

  218. Swaroop A, Bagchi D (2016) nutraceuticals and functional food supplements for brain health article 2016. http://www.naturalproductsinsider.com/articles/2016/01/nutraceuticals-and-functional-food-supplements-fo.aspx. Accessed 31 Aug 2016

  219. Farias GA, Guzman-Martinez L, Delgado C, Maccioni RB (2014) Nutraceuticals: a novel concept in prevention and treatment of Alzheimer’s disease and related disorders. J Alzheimers Dis 42(2):357–367

    CAS  PubMed  Google Scholar 

  220. Forbes SC, Holroyd-Leduc JM, Poulin MJ, Hogan DB (2015) Effect of nutrients, dietary supplements and vitamins on cognition: a systematic review and meta-analysis of randomized controlled trials. Can Geriatr J 18(4):231–245

    Article  PubMed  PubMed Central  Google Scholar 

  221. Scheltens P, Kamphuis PJ, Verhey FR et al (2010) Efficacy of a medical food in mild Alzheimer’s disease: a randomized, controlled trial. Alzheimers Dement 6(1):1–10.e1

    Article  CAS  PubMed  Google Scholar 

  222. Scheltens P, Twisk JW, Blesa R et al (2012) Efficacy of Souvenaid in mild Alzheimer’s disease: results from a randomized, controlled trial. J Alzheimers Dis 31(1):225–236

    CAS  PubMed  Google Scholar 

  223. Shah RC, Kamphuis PJ, Leurgans S et al (2013) The S-Connect study: results from a randomized, controlled trial of Souvenaid in mild-to-moderate Alzheimer’s disease. Alzheimers Res Ther 5(6):59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Onakpoya IJ, Heneghan CJ (2015) The efficacy of supplementation with the novel medical food, Souvenaid, in patients with Alzheimer’s disease: a systematic review and meta-analysis of randomized clinical trials. Nutr Neurosci 7:1–9

    Google Scholar 

  225. Soininen H, Visser PJ, Kivipelto M, Group HTftLs (2016) A clinical trial investigating the effects of Fortasyn Connect (Souvenaid) in prodromal Alzheimer’s disease: results of the LipiDiDiet study. In: 14th international Athens/Springfield symposium on advances in Alzheimer therapy

    Google Scholar 

  226. Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC (2009) Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond) 6:31

    Article  CAS  Google Scholar 

  227. Maynard SD, Gelblum J (2013) Retrospective case studies of the efficacy of caprylic triglyceride in mild-to-moderate Alzheimer’s disease. Neuropsychiatr Dis Treat 9:1629–1635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Ohnuma T, Toda A, Kimoto A et al (2016) Benefits of use, and tolerance of, medium-chain triglyceride medical food in the management of Japanese patients with Alzheimer’s disease: a prospective, open-label pilot study. Clin Interv Aging 11:29–36

    Article  PubMed  PubMed Central  Google Scholar 

  229. Laws KR, Sweetnam H, Kondel TK (2012) Is Ginkgo biloba a cognitive enhancer in healthy individuals? A meta-analysis. Hum Psychopharmacol 27(6):527–533

    Article  CAS  PubMed  Google Scholar 

  230. Hashiguchi M, Ohta Y, Shimizu M, Maruyama J, Mochizuki M (2015) Meta-analysis of the efficacy and safety of Ginkgo biloba extract for the treatment of dementia. J Pharm Health Care Sci 1:14

    Article  PubMed  PubMed Central  Google Scholar 

  231. Birks J, Grimley EJ (2009) Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev 1:CD003120

    Google Scholar 

  232. Shi C, Liu J, Wu F, Yew DT (2010) Ginkgo biloba extract in Alzheimer’s disease: from action mechanisms to medical practice. Int J Mol Sci 11(1):107–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Gervais F, Paquette J, Morissette C et al (2007) Targeting soluble Abeta peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol Aging 28(4):537–547

    Article  CAS  PubMed  Google Scholar 

  234. Aisen PS, Gauthier S, Ferris SH et al (2011) Tramiprosate in mild-to-moderate Alzheimer’s disease—a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch Med Sci 7(1):102–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Swanoski MT (2009) Homotaurine: a failed drug for Alzheimer’s disease and now a nutraceutical for memory protection. Am J Health Syst Pharm 66(21):1950–1953

    Article  PubMed  Google Scholar 

  236. More MI, Freitas U, Rutenberg D (2014) Positive effects of soy lecithin-derived phosphatidylserine plus phosphatidic acid on memory, cognition, daily functioning, and mood in elderly patients with Alzheimer’s disease and dementia. Adv Ther 31(12):1247–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Glade MJ, Smith K (2015) Phosphatidylserine and the human brain. Nutrition 31(6):781–786

    Article  CAS  PubMed  Google Scholar 

  238. Farokhnia M, Shafiee Sabet M, Iranpour N et al (2014) Comparing the efficacy and safety of Crocus sativus L. with memantine in patients with moderate to severe Alzheimer’s disease: a double-blind randomized clinical trial. Hum Psychopharmacol 29(4):351–359

    Article  CAS  PubMed  Google Scholar 

  239. Damar U, Gersner R, Johnstone JT, Schachter S, Rotenberg A (2016) Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research. Expert Rev Neurother 16(6):671–680

    Article  CAS  PubMed  Google Scholar 

  240. Xing SH, Zhu CX, Zhang R, An L (2014) Huperzine A in the treatment of Alzheimer’s disease and vascular dementia: a meta-analysis. Evid Based Complement Alternat Med 2014:363985

    Article  PubMed  PubMed Central  Google Scholar 

  241. Hao Z, Liu M, Liu Z, Lv D (2009) Huperzine A for vascular dementia. Cochrane Database Syst Rev 2:CD007365

    Google Scholar 

  242. Yue J, Dong BR, Lin X, Yang M, Wu HM, Wu T (2012) Huperzine A for mild cognitive impairment. Cochrane Database Syst Rev 12:CD008827

    PubMed  Google Scholar 

  243. Hang L, Basil AH, Lim KL (2016) Nutraceuticals in Parkinson’s disease. Neruomol Med 18:306–321

    Article  CAS  Google Scholar 

  244. Qi H, Li S (2014) Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr Gerontol Int 14(2):430–439

    Article  PubMed  Google Scholar 

  245. Postuma RB, Lang AE, Munhoz RP et al (2012) Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology 79(7):651–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Simon DK, Wu C, Tilley BC et al (2015) Caffeine and progression of Parkinson disease: a deleterious interaction with creatine. Clin Neuropharmacol 38(5):163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Tan LC, Koh WP, Yuan JM et al (2008) Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. Am J Epidemiol 167(5):553–560

    Article  PubMed  Google Scholar 

  248. Katzenschlager R, Evans A, Manson A et al (2004) Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry 75(12):1672–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Wills AM, Hubbard J, Macklin EA et al (2014) Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 383(9934):2065–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Ngo ST, Steyn FJ, PA MC, Borges B (2015) High calorie diets in amyotrophic lateral sclerosis. In: Watson RR, Preedy VR (eds) Bioactive nutraceuticals and dietary supplements in neurological and brain diseaseed by Watson RR and Preedy VR, Academic Press, London, pp 355–361

    Google Scholar 

  251. Group AL, Fournier C, Bedlack B et al (2013) ALS untangled no. 20: the Deanna protocol. Amyotroph Lateral Scler Frontotemporal Degener 14(4):319–323

    Article  Google Scholar 

  252. Group AL (2012) ALSUntangled No. 14: Mototab. Amyotroph Lateral Scler 13(1):161–164

    Article  Google Scholar 

  253. Xu Z, Chen S, Li X, Luo G, Li L, Le W (2006) Neuroprotective effects of (−)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem Res 31(10):1263–1269

    Article  CAS  PubMed  Google Scholar 

  254. Mancuso R, del Valle J, Modol L et al (2014) Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics 11(2):419–432

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Zhao W, Varghese M, Vempati P et al (2012) Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease. PLoS One 7(11):e49191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Fondell E, O’Reilly EI, Fitzgerald KC et al (2015) Intakes of caffeine, coffee and tea and risk of amyotrophic lateral sclerosis: results from five cohort studies. Amyotroph Lateral Scler Frontotemporal Degener 16(5–6):366–371

    Article  PubMed  PubMed Central  Google Scholar 

  257. Holland S, Silberstein SD, Freitag F et al (2012) Evidence-based guideline update: NSAIDs and other complementary treatments for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology 78(17):1346–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Pringsheim T, Davenport W, Mackie G et al (2012) Canadian Headache Society guideline for migraine prophylaxis. Can J Neurol Sci 39(2 Suppl 2):S1–59

    PubMed  Google Scholar 

  259. Teigen L, Boes CJ (2015) An evidence-based review of oral magnesium supplementation in the preventive treatment of migraine. Cephalalgia 35(10):912–922

    Article  PubMed  Google Scholar 

  260. Daniel O, Mauskop A (2016) Nutraceuticals in acute and prophylactic treatment of migraine. Curr Treat Options Neurol 18(4):14

    Article  PubMed  Google Scholar 

  261. Diener HC, Rahlfs VW, Danesch U (2004) The first placebo-controlled trial of a special butterbur root extract for the prevention of migraine: reanalysis of efficacy criteria. Eur Neurol 51(2):89–97

    Article  CAS  PubMed  Google Scholar 

  262. Oelkers-Ax R, Leins A, Parzer P et al (2008) Butterbur root extract and music therapy in the prevention of childhood migraine: an explorative study. Eur J Pain 12(3):301–313

    Article  PubMed  Google Scholar 

  263. Lipton RB, Gobel H, Einhaupl KM, Wilks K, Mauskop A (2004) Petasites hybridus root (butterbur) is an effective preventive treatment for migraine. Neurology 63(12):2240–2244

    Article  CAS  PubMed  Google Scholar 

  264. Materazzi S, Benemei S, Fusi C et al (2013) Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting the TRPA1 channel. Pain 154(12):2750–2758

    Article  CAS  PubMed  Google Scholar 

  265. Pfaffenrath V, Diener HC, Fischer M, Friede M, Henneicke-von Zepelin HH, Investigators (2002) The efficacy and safety of Tanacetum parthenium (feverfew) in migraine prophylaxis—a double-blind, multicentre, randomized placebo-controlled dose-response study. Cephalalgia 22(7):523–532

    Article  CAS  PubMed  Google Scholar 

  266. Maizels M, Blumenfeld A, Burchette R (2004) A combination of riboflavin, magnesium, and feverfew for migraine prophylaxis: a randomized trial. Headache 44(9):885–890

    Article  PubMed  Google Scholar 

  267. Wider B, Pittler MH, Ernst E (2015) Feverfew for preventing migraine. Cochrane Database Syst Rev 4:CD002286

    PubMed  Google Scholar 

  268. Cady R, Serrano D, Lipton R, Browning R (2013) Sublingual feverfew/ginger (LipiGesic M) reanalysis of data. Headache 53(2):384–386

    Article  PubMed  Google Scholar 

  269. Cady RK, Goldstein J, Nett R, Mitchell R, Beach ME, Browning R (2011) A double-blind placebo-controlled pilot study of sublingual feverfew and ginger (LipiGesic M) in the treatment of migraine. Headache 51(7):1078–1086

    Article  PubMed  Google Scholar 

  270. Srinivasan V, Lauterbach EC, Ho KY, Acuna-Castroviejo D, Zakaria R, Brzezinski A (2012) Melatonin in antinociception: its therapeutic applications. Curr Neuropharmacol 10(2):167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Alstadhaug KB, Odeh F, Salvesen R, Bekkelund SI (2010) Prophylaxis of migraine with melatonin: a randomized controlled trial. Neurology 75(17):1527–1532

    Article  CAS  PubMed  Google Scholar 

  272. Goncalves AL, Martini Ferreira A, Ribeiro RT, Zukerman E, Cipolla-Neto J, Peres MF (2016) Randomised clinical trial comparing melatonin 3 mg, amitriptyline 25 mg and placebo for migraine prevention. J Neurol Neurosurg Psychiatry 87:1127–1132

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Akif Topcuoglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Topcuoglu, M.A., Arsava, E.M. (2017). Neuronutrition: An Emerging Concept. In: Arsava, E. (eds) Nutrition in Neurologic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-53171-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53171-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53170-0

  • Online ISBN: 978-3-319-53171-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics