Skip to main content

Herpesvirus Nuclear Egress

  • Chapter
  • First Online:
Book cover Cell Biology of Herpes Viruses

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 223))

Abstract

Herpesviruses assemble and package their genomes into capsids in the nucleus, but complete final assembly of the mature virion in the cell cytoplasm. This requires passage of the genome-containing capsid across the double-membrane nuclear envelope. Herpesviruses have evolved a mechanism that relies on a pair of conserved viral gene products to shuttle the capsids from the nucleus to the cytoplasm by way of envelopment and de-envelopment at the inner and outer nuclear membranes, respectively. This complex process requires orchestration of the activities of viral and cellular factors to alter the architecture of the nuclear membrane, select capsids at the appropriate stage for egress, and accomplish efficient membrane budding and fusion events. The last few years have seen major advances in our understanding of the membrane budding mechanism and helped clarify the roles of viral and cellular proteins in the other, more mysterious steps. Here, we summarize and place into context this recent research and, hopefully, clarify both the major advances and major gaps in our understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Baines JD, Koyama AH, Huang T, Roizman B (1994) The UL21 gene of herpes simplex virus 1 is dispensable for replication in cell culture. J Virol 68:2929–2936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker TS, Newcomb WW, Booy FP, Brown JC, Steven AC (1990) Three-dimensional structures of maturable and abortive capsids of equine herpesvirus 1 from cryoelectron microscopy. J Virol 64:563–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Harush K, Wiesel N, Frenkiel-Krispin D, Moeller D, Soreq E, Aebi U, Herrmann H, Gruenbaum Y, Medalia O (2009) The supramolecular organization of the C. elegans nuclear lamin filament. J Mol Biol 386:1392–1402

    Article  CAS  PubMed  Google Scholar 

  • Bigalke JM, Heldwein EE (2015) Structural basis of membrane budding by the nuclear egress complex of herpesviruses. EMBO J 34:2921–2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigalke JM, Heuser T, Nicastro D, Heldwein EE (2014) Membrane deformation and scission by the HSV-1 nuclear egress complex. Nat Commun 5:4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjerke SL, Roller R (2006) Roles for herpes simplex type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. Virology 347(2):261–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjerke SL, Cowan JM, Kerr JK, Reynolds AE, Baines JD, Roller RJ (2003) Effects of charged cluster mutations on the function of herpes simplex virus type 1 UL34 protein. J Virol 77:7601–7610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booy FP, Trus BL, Newcomb WW, Brown JC, Conway JF, Steven AC (1994) Finding a needle in a haystack: detection of a small protein (the 12-kDa VP26) in a large complex (the 200-MDa capsid of herpes simplex virus). Proc Natl Acad Sci U S A 91:5652–5656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosse JB, Virding S, Thiberge SY, Scherer J, Wodrich H, Ruzsics Z, Koszinowski UH, Enquist LW (2014) Nuclear herpesvirus capsid motility is not dependent on F-actin. MBio 5:e01909–e01914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs JA, Riches JD, Glass B, Bartonova V, Zanetti G, Krausslich HG (2009) Structure and assembly of immature HIV. Proc Natl Acad Sci U S A 106:11090–11095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camozzi D, Pignatelli S, Valvo C, Lattanzi G, Capanni C, Dal Monte P, Landini MP (2008) Remodelling of the nuclear lamina during human cytomegalovirus infection: role of the viral proteins pUL50 and pUL53. J Gen Virol 89:731–740

    Article  CAS  PubMed  Google Scholar 

  • Cano-Monreal GL, Wylie KM, Cao F, Tavis JE, Morrison LA (2009) Herpes simplex virus 2 UL13 protein kinase disrupts nuclear lamins. Virology 392:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardone G, Winkler DC, Trus BL, Cheng N, Heuser JE, Newcomb WW, Brown JC, Steven AC (2007) Visualization of the herpes simplex virus portal in situ by cryo-electron tomography. Virology 361:426–434

    Article  CAS  PubMed  Google Scholar 

  • Cardone G, Newcomb WW, Cheng N, Wingfield PT, Trus BL, Brown JC, Steven AC (2012) The UL36 tegument protein of herpes simplex virus 1 has a composite binding site at the capsid vertices. J Virol 86:4058–4064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YE, Roizman B (1993) The product of the UL31 gene of herpes simplex virus 1 is a nuclear phosphoprotein which partitions with the nuclear matrix. J Virol 67:6348–6356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YE, Van Sant C, Krug PW, Sears AE, Roizman B (1997) The null mutant of the U(L)31 gene of herpes simplex virus 1: construction and phenotype in infected cells. J Virol 71:8307–8315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang JT, Schmid MF, Rixon FJ, Chiu W (2007) Electron cryotomography reveals the portal in the herpesvirus capsid. J Virol 81:2065–2068

    Article  CAS  PubMed  Google Scholar 

  • Changotra H, Turk SM, Artigues A, Thakur N, Gore M, Muggeridge MI, Hutt-Fletcher LM (2016) Epstein-Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus. Virology 489:223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockrell SK, Huffman JB, Toropova K, Conway JF, Homa FL (2011) Residues of the UL25 protein of herpes simplex virus that are required for its stable interaction with capsids. J Virol 85:4875–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conway JF, Cockrell SK, Copeland AM, Newcomb WW, Brown JC, Homa FL (2010) Labeling and localization of the herpes simplex virus capsid protein UL25 and its interaction with the two triplexes closest to the penton. J Mol Biol 397:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darlington RW, Moss LH (1968) Herpesvirus envelopment. J Virol 2:48–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Bruyn KA (1998) Comparison of the intranuclear distributions of herpes simplex virus proteins involved in various viral functions. Virology 252:162–178

    Article  Google Scholar 

  • de Bruyn Kops A, Knipe DM (1994) Preexisting nuclear architecture defines the intranuclear location of herpesvirus DNA replication structures. J Virol 68:3512–3526

    PubMed  PubMed Central  Google Scholar 

  • Desai PJ (2000) A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J Virol 74:11608–11618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai P, Person S (1998) Incorporation of the green fluorescent protein into the herpes simplex virus type 1 capsid. J Virol 72:7563–7568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desai PJ, Pryce EN, Henson BW, Luitweiler EM, Cothran J (2012) Reconstitution of the Kaposi’s sarcoma-associated herpesvirus nuclear egress complex and formation of nuclear membrane vesicles by coexpression of ORF67 and ORF69 gene products. J Virol 86:594–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittmer A, Bogner E (2005) Analysis of the quaternary structure of the putative HCMV portal protein PUL104. Biochemistry 44:759–765

    Article  CAS  PubMed  Google Scholar 

  • Falke D, Siegert R, Vogell W (1959) Electron microscopic findings on the problem of double membrane formation in herpes simplex virus. Arch Gesamte Virusforsch 9:484–496

    Article  CAS  PubMed  Google Scholar 

  • Fan WH, Roberts AP, McElwee M, Bhella D, Rixon FJ, Lauder R (2015) The large tegument protein pUL36 is essential for formation of the capsid vertex-specific component at the capsid-tegument interface of herpes simplex virus 1. J Virol 89:1502–1511

    Article  PubMed  CAS  Google Scholar 

  • Farina A, Feederle R, Raffa S, Gonnella R, Santarelli R, Frati L, Angeloni A, Torrisi MR, Faggioni A, Delecluse HJ (2005) BFRF1 of Epstein-Barr virus is essential for efficient primary viral envelopment and egress. J Virol 79:3703–3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farnsworth A, Wisner TW, Webb M, Roller R, Cohen G, Eisenberg R, Johnson DC (2007) Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane. Proc Natl Acad Sci U S A 104:10187–10192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feierbach B, Piccinotti S, Bisher M, Denk W, Enquist LW (2006) Alpha-herpesvirus infection induces the formation of nuclear actin filaments. PLoS Pathog 2:e85

    Article  PubMed  PubMed Central  Google Scholar 

  • Foisner R, Gerace L (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73:1267–1279

    Article  CAS  PubMed  Google Scholar 

  • Forest T, Barnard S, Baines JD (2005) Active intranuclear movement of herpesvirus capsids. Nat Cell Biol 7:429–431

    Article  CAS  PubMed  Google Scholar 

  • Fuchs W, Klupp BG, Granzow H, Osterrieder N, Mettenleiter TC (2002) The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J Virol 76:364–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs W, Klupp BG, Granzow H, Mettenleiter TC (2004) Essential function of the pseudorabies virus UL36 gene product is independent of its interaction with the UL37 protein. J Virol 78:11879–11889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk C, Ott M, Raschbichler V, Nagel C-H, Binz A, Sodeik B, Bauerfeind R, Bailer SM (2015) The herpes simplex virus protein pUL31 escorts nucleocapsids to sites of nuclear egress, a process coordinated by its N-terminal domain. PLoS Pathog 11:e1004957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furlong D (1978) Direct evidence for 6-fold symmetry of the herpesvirus hexon capsomere. Proc Natl Acad Sci U S A 75:2764–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershburg E, Pagano JS (2008) Conserved herpesvirus protein kinases. Biochim Biophys Acta 1784:203–212

    Article  CAS  PubMed  Google Scholar 

  • Ghebrehiwet B, Peerschke EI (2004) cC1q-R (calreticulin) and gC1q-R/p33: ubiquitously expressed multi-ligand binding cellular proteins involved in inflammation and infection. Mol Immunol 41:173–183

    Article  CAS  PubMed  Google Scholar 

  • Gibson W, Roizman B (1972) Proteins specified by herpes simplex virus. 8. Characterization and composition of multiple capsid forms of subtypes 1 and 2. J Virol 10:1044–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giesen K, Radsak K, Bogner E (2000) Targeting of the gene product encoded by ORF UL56 of human cytomegalovirus into viral replication centers. FEBS Lett 471:215–218

    Article  CAS  PubMed  Google Scholar 

  • Gonnella R, Farina A, Santarelli R, Raffa S, Feederle R, Bei R, Granato M, Modesti A, Frati L, Delecluse HJ, Torrisi MR, Angeloni A, Faggioni A (2005) Characterization and intracellular localization of the Epstein-Barr virus protein BFLF2: interactions with BFRF1 and with the nuclear lamina. J Virol 79:3713–3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goss VL, Hocevar BA, Thompson LJ, Stratton CA, Burns DJ, Fields AP (1994) Identification of nuclear beta II protein kinase C as a mitotic lamin kinase. J Biol Chem 269:19074–19080

    CAS  PubMed  Google Scholar 

  • Granato M, Feederle R, Farina A, Gonnella R, Santarelli R, Hub B, Faggioni A, Delecluse H-J (2008) Deletion of Epstein-Barr virus BFLF2 leads to impaired viral DNA packaging and primary egress as well as to the production of defective viral particles. J Virol 82:4042–4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granzow H, Klupp BG, Mettenleiter TC (2004) The pseudorabies virus US3 protein is a component of primary and of mature virions. J Virol 78:1314–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm KS, Klupp BG, Granzow H, Müller FM, Fuchs W, Mettenleiter TC (2012) Analysis of viral and cellular factors influencing herpesvirus-induced nuclear envelope breakdown. J Virol 86:6512–6521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruenbaum Y, Foisner R (2015) Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 84:131–164

    Article  CAS  PubMed  Google Scholar 

  • Hagen C, Dent Kyle C, Zeev-Ben-Mordehai T, Grange M, Bosse Jens B, Whittle C, Klupp Barbara G, Siebert CA, Vasishtan D, Bäuerlein Felix JB, Cheleski J, Werner S, Guttmann P, Rehbein S, Henzler K, Demmerle J, Adler B, Koszinowski U, Schermelleh L, Schneider G, Enquist Lynn W, Plitzko Jürgen M, Mettenleiter Thomas C, Grünewald K (2015) Structural basis of vesicle formation at the inner nuclear membrane. Cell 163:1692–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamirally S, Kamil JP, Ndassa-Colday YM, Lin AJ, Jahng WJ, Baek MC, Noton S, Silva LA, Simpson-Holley M, Knipe DM, Golan DE, Marto JA, Coen DM (2009) Viral mimicry of Cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human cytomegalovirus nuclear egress. PLoS Pathog 5:e1000275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heitlinger E, Peter M, Häner M, Lustig A, Aebi U, Nigg EA (1991) Expression of chicken lamin B2 in Escherichia coli: characterization of its structure, assembly, and molecular interactions. J Cell Biol 113:485–495

    Article  CAS  PubMed  Google Scholar 

  • Henaff D, Remillard-Labrosse G, Loret S, Lippe R (2013) Analysis of the early steps of herpes simplex virus 1 capsid tegumentation. J Virol 87:4895–4906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heymann JB, Cheng N, Newcomb WW, Trus BL, Brown JC, Steven AC (2003) Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy. Nat Struct Biol 10:334–341

    Article  CAS  PubMed  Google Scholar 

  • Hocevar BA, Burns DJ, Fields AP (1993) Identification of protein kinase C (PKC) phosphorylation sites on human lamin B. Potential role of PKC in nuclear lamina structural dynamics. J Biol Chem 268:7545–7552

    CAS  PubMed  Google Scholar 

  • Hofemeister H, O’Hare P (2008) Nuclear pore composition and gating in herpes simplex virus-infected cells. J Virol 82:8392–8399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huet A, Makhov AM, Huffman JB, Vos M, Homa FL, Conway JF (2016) Extensive subunit contacts underpin herpesvirus capsid stability and interior-to-exterior allostery. Nat Struct Mol Biol 23:531–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing X, Cerveny M, Yang K, He B (2004) Replication of herpes simplex virus 1 depends on the gamma 134.5 functions that facilitate virus response to interferon and egress in the different stages of productive infection. J Virol 78:7653–7666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jokhi V, Ashley J, Nunnari J, Noma A, Ito N, Wakabayashi-Ito N, Moore MJ, Budnik V (2013) Torsin mediates primary envelopment of large ribonucleoprotein granules at the nuclear envelope. Cell Rep 3:988–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato A, Yamamoto M, Ohno T, Kodaira H, Nishiyama Y, Kawaguchi Y (2005) Identification of proteins phosphorylated directly by the Us3 protein kinase encoded by herpes simplex virus 1. J Virol 79:9325–9331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato A, Yamamoto M, Ohno T, Tanaka M, Sata T, Nishiyama Y, Kawaguchi Y (2006) Herpes simplex virus 1-encoded protein kinase UL13 phosphorylates viral Us3 protein kinase and regulates nuclear localization of viral envelopment factors UL34 and UL31. J Virol 80:1476–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi Y, Kato K (2003) Protein kinases conserved in herpesviruses potentially share a function mimicking the cellular protein kinase cdc2. Rev Med Virol 13:331–340

    Article  CAS  PubMed  Google Scholar 

  • Klupp BG, Granzow H, Mettenleiter TC (2000) Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product. J Virol 74:10063–10073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klupp BG, Granzow H, Mettenleiter TC (2001) Effect of the pseudorabies virus US3 protein on nuclear membrane localization of the UL34 protein and virus egress from the nucleus. J Gen Virol 82:2363–2371

    Article  CAS  PubMed  Google Scholar 

  • Klupp BG, Bottcher S, Granzow H, Kopp M, Mettenleiter TC (2005) Complex formation between the UL16 and UL21 tegument proteins of pseudorabies virus. J Virol 79:1510–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klupp BG, Granzow H, Keil GM, Mettenleiter TC (2006) The capsid-associated UL25 protein of the alphaherpesvirus pseudorabies virus is nonessential for cleavage and encapsidation of genomic DNA but is required for nuclear egress of capsids. J Virol 80:6235–6346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klupp BG, Granzow H, Fuchs W, Keil GM, Finke S, Mettenleiter TC (2007) Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc Natl Acad Sci U S A 104:7241–7246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klupp B, Altenschmidt J, Granzow H, Fuchs W, Mettenleiter TC (2008) Glycoproteins required for entry are not necessary for egress of pseudorabies virus. J Virol 82:6299–6309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klupp BG, Granzow H, Mettenleiter TC (2011) Nuclear envelope breakdown can substitute for primary envelopment-mediated nuclear egress of herpesviruses. J Virol 85:8285–8292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krosky PM, Baek MC, Coen DM (2003) The human cytomegalovirus UL97 protein kinase, an antiviral drug target, is required at the stage of nuclear egress. J Virol 77:905–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn J, Leege T, Klupp BG, Granzow H, Fuchs W, Mettenleiter TC (2008) Partial functional complementation of a pseudorabies virus UL25 deletion mutant by herpes simplex virus type 1 pUL25 indicates overlapping functions of alphaherpesvirus pUL25 proteins. J Virol 82:5725–5734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lake CM, Hutt-Fletcher LM (2004) The Epstein-Barr virus BFRF1 and BFLF2 proteins interact and coexpression alters their cellular localization. Virology 320:99–106

    Article  CAS  PubMed  Google Scholar 

  • Lamberti C, Weller SK (1998) The herpes simplex virus type 1 cleavage/packaging protein UL32 is involved in efficient localization of capsids to replication compartments. J Virol 72:2463–2473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Sage V, Jung M, Alter JD, Wills EG, Johnston SM, Kawaguchi Y, Baines JD, Banfield BW (2013) The herpes simplex virus 2 UL21 protein is essential for virus propagation. J Virol 87:5904–5915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leach NR, Roller RJ (2010) Significance of host cell kinases in herpes simplex virus type 1 egress and lamin-associated protein disassembly from the nuclear lamina. Virology 406:127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leach N, Bjerke SL, Christensen DK, Bouchard JM, Mou F, Park R, Baines J, Haraguchi T, Roller RJ (2007) Emerin is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent on both UL34 and US3. J Virol 81:10792–10803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JI, Luxton GW, Smith GA (2006) Identification of an essential domain in the herpesvirus VP1/2 tegument protein: the carboxy terminus directs incorporation into capsid assemblons. J Virol 80:12086–12094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CP, Huang YH, Lin SF, Chang Y, Chang YH, Takada K, Chen MR (2008) Epstein-Barr virus BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. J Virol 82:11913–11926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leelawong M, Lee JI, Smith GA (2012) Nuclear egress of pseudorabies virus capsids is enhanced by a subspecies of the large tegument protein that is lost upon cytoplasmic maturation. J Virol 86:6303–6314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh KE, Sharma M, Mansueto MS, Boeszoermenyi A, Filman DJ, Hogle JM, Wagner G, Coen DM, Arthanari H (2015) Structure of a herpesvirus nuclear egress complex subunit reveals an interaction groove that is essential for viral replication. Proc Natl Acad Sci U S A 112:9010–9015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuzinger H, Ziegler U, Schraner EM, Fraefel C, Glauser DL, Heid I, Ackermann M, Mueller M, Wild P (2005) Herpes simplex virus 1 envelopment follows two diverse pathways. J Virol 79:13047–13059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang L, Baines JD (2005) Identification of an essential domain in the herpes simplex virus 1 UL34 protein that is necessary and sufficient to interact with UL31 protein. J Virol 79:3797–3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Kato A, Shindo K, Noda T, Sagara H, Kawaoka Y, Arii J, Kawaguchi Y (2014) Herpes simplex virus 1 UL47 interacts with viral nuclear egress factors UL31, UL34, and Us3 and regulates viral nuclear egress. J Virol 88:4657–4667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lorenz M, Vollmer B, Unsay JD, Klupp BG, Garcia-Saez AJ, Mettenleiter TC, Antonin W (2015) A single herpesvirus protein can mediate vesicle formation in the nuclear envelope. J Biol Chem 290:6962–6974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukonis CJ, Weller SK (1997) Formation of herpes simplex virus type 1 replication compartments by transfection: requirements and localization to nuclear domain 10. J Virol 71:2390–2399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luxton GW, Haverlock S, Coller KE, Antinone SE, Pincetic A, Smith GA (2005) Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc Natl Acad Sci U S A 102:5832–5837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lye MF, Sharma M, El Omari K, Filman DJ, Schuermann JP, Hogle JM, Coen DM (2015) Unexpected features and mechanism of heterodimer formation of a herpesvirus nuclear egress complex. EMBO J 34:2937–2952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maric M, Shao J, Ryan RJ, Wong C-S, Gonzalez-Alegre P, Roller RJ (2011) A functional role for torsinA in herpes simplex virus type 1 nuclear egress. J Virol 85:9667–9779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maric M, Haugo AC, Dauer W, Johnson D, Roller RJ (2014) Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins. Virology 460–461:128–137

    Article  PubMed  CAS  Google Scholar 

  • Marschall M, Marzi A, aus dem Siepen P, Jochmann R, Kalmer M, Auerochs S, Lischka P, Leis M, Stamminger T (2005) Cellular p32 recruits cytomegalovirus kinase pUL97 to redistribute the nuclear lamina. J Biol Chem 280:33357–33367

    Article  CAS  PubMed  Google Scholar 

  • Maruzuru Y, Shindo K, Liu Z, Oyama M, Kozuka-Hata H, Arii J, Kato A, Kawaguchi Y (2014) Role of herpes simplex virus 1 immediate early protein ICP22 in viral nuclear egress. J Virol 88:7445–7454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milbradt J, Auerochs S, Marschall M (2007) Cytomegaloviral proteins pUL50 and pUL53 are associated with the nuclear lamina and interact with cellular protein kinase C. J Gen Virol 88:2642–2650

    Article  CAS  PubMed  Google Scholar 

  • Milbradt J, Auerochs S, Sticht H, Marschall M (2009) Cytomegaloviral proteins that associate with the nuclear lamina: components of a postulated nuclear egress complex. J Gen Virol 90:579–590

    Article  CAS  PubMed  Google Scholar 

  • Milbradt J, Webel R, Auerochs S, Sticht H, Marschall M (2010) Novel mode of phosphorylation-triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus. J Biol Chem 285:13979–13989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milbradt J, Kraut A, Hutterer C, Sonntag E, Schmeiser C, Ferro M, Wagner S, Lenac T, Claus C, Pinkert S, Hamilton ST, Rawlinson WD, Sticht H, Coute Y, Marschall M (2014) Proteomic analysis of the multimeric nuclear egress complex of human cytomegalovirus. Mol Cell Proteomics 13:2132–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffat JF, Zerboni L, Sommer MH, Heineman TC, Cohen JI, Kaneshima H, Arvin AM (1998) The ORF47 and ORF66 putative protein kinases of varicella-zoster virus determine tropism for human T cells and skin in the SCID-hu mouse. Proc Natl Acad Sci U S A 95:11969–11974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moir RD, Yoon M, Khuon S, Goldman RD (2000) Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J Cell Biol 151:1155–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monier K, Armas JC, Etteldorf S, Ghazal P, Sullivan KF (2000) Annexation of the interchromosomal space during viral infection. Nat Cell Biol 2:661–665

    Article  CAS  PubMed  Google Scholar 

  • Morris JB, Hofemeister H, O’Hare P (2007) Herpes simplex virus infection induces phosphorylation and delocalization of emerin, a key inner nuclear membrane protein. J Virol 81:4429–4437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou F, Forest T, Baines JD (2007) Us3 of herpes simplex type 1 encodes a promiscuous protein kinase that phosphorylates and alters localization of lamin A/C in infected cells. J Virol 81:6459–6470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou F, Wills EG, Park R, Baines JD (2008) Effects of lamin A/C, lamin B1, and viral US3 kinase activity on viral infectivity, virion egress, and the targeting of herpes simplex virus U(L)34-encoded protein to the inner nuclear membrane. J Virol 82:8094–8104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou F, Wills E, Baines JD (2009) Phosphorylation of the U(L)31 protein of herpes simplex virus 1 by the U(S)3-encoded kinase regulates localization of the nuclear envelopment complex and egress of nucleocapsids. J Virol 83:5181–5191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muranyi W, Haas J, Wagner M, Krohne G, Koszinowski UH (2002) Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science 297:854–857

    Article  CAS  PubMed  Google Scholar 

  • Newcomb WW, Brown JC (2010) Structure and capsid association of the herpesvirus large tegument protein UL36. J Virol 84:9408–9414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb WW, Trus BL, Booy F, Steven AC, Wall JS, Brown JC (1993) Structure of the herpes simplex virus capsid. Molecular composition of the pentons and the triplexes. J Mol Biol 232:499–511

    Article  CAS  PubMed  Google Scholar 

  • Newcomb WW, Homa FL, Thomsen DR, Booy FP, Trus BL, Steven AC, Spencer JV, Brown JC (1996) Assembly of the herpes simplex virus capsid: characterization of intermediates observed during cell-free capsid formation. J Mol Biol 263:432–446

    Article  CAS  PubMed  Google Scholar 

  • Newcomb WW, Homa FL, Thomsen DR, Trus BL, Cheng N, Steven A, Booy F, Brown JC (1999) Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. J Virol 73:4239–4250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb WW, Trus BL, Cheng N, Steven AC, Sheaffer AK, Tenney DJ, Weller SK, Brown JC (2000) Isolation of herpes simplex virus procapsids from cells infected with a protease-deficient mutant virus. J Virol 74:1663–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb WW, Juhas RM, Thomsen DR, Homa FL, Burch AD, Weller SK, Brown JC (2001) The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J Virol 75:10923–10932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb WW, Homa FL, Brown JC (2006) Herpes simplex virus capsid structure: DNA packaging protein UL25 is located on the external surface of the capsid near the vertices. J Virol 80:6286–6294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozawa N, Kawaguchi Y, Tanaka M, Kato A, Kato A, Kimura H, Nishiyama Y (2005) Herpes simplex virus type 1 UL51 protein is involved in maturation and egress of virus particles. J Virol 79:6947–6956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Hara M, Rixon FJ, Stow ND, Murray J, Murphy M, Preston VG (2010) Mutational analysis of the herpes simplex virus type 1 UL25 DNA packaging protein reveals regions that are important after the viral DNA has been packaged. J Virol 84:4252–4263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3:ra3

    Article  PubMed  CAS  Google Scholar 

  • Padula ME, Sydnor ML, Wilson DW (2009) Isolation and preliminary characterization of herpes simplex virus 1 primary enveloped virions from the perinuclear space. J Virol 83:4757–4765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pancake BA, Aschman DP, Schaffer PA (1983) Genetic and phenotypic analysis of herpes simplex virus type 1 mutants conditionally resistant to immune cytolysis. J Virol 47:568–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park R, Baines J (2006) Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase C to the nuclear membrane and increased phosphorylation of lamin B. J Virol 80:494–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel JT, Bottrill A, Prosser SL, Jayaraman S, Straatman K, Fry AM, Shackleton S (2014) Mitotic phosphorylation of SUN1 loosens its connection with the nuclear lamina while the LINC complex remains intact. Nucleus 5:462–473

    Article  PubMed  PubMed Central  Google Scholar 

  • Patrizi G, Middelkamp JN, Reed CA (1967) Reduplication of nuclear membranes in tissue-culture cells infected with guinea-pig cytomegalovirus. Am J Pathol 50:779–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pelletier A, Do F, Brisebois JJ, Lagace L, Cordingley MG (1997) Self-association of herpes simplex virus type 1 ICP35 is via coiled-coil interactions and promotes stable interaction with the major capsid protein. J Virol 71:5197–5208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peter M, Nakagawa J, Dorée M, Labbé JC, Nigg EA (1990) In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 61:591–602

    Article  CAS  PubMed  Google Scholar 

  • Purves FC, Longnecker RM, Leader DP, Roizman B (1987) Herpes simplex virus 1 protein kinase is encoded by open reading frame US3 which is not essential for virus growth in cell culture. J Virol 61:2896–2901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purves FC, Spector D, Roizman B (1991) The herpes simplex virus 1 protein kinase encoded by the Us3 gene mediates posttranslational modification of the phosphoprotein encoded by the UL34 gene. J Virol 65:5757–5764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purves FC, Spector D, Roizman B (1992) UL34, the target of the herpes simplex virus Us3 protein kinase, is a membrane protein which in its unphosphorylated state associates with novel phosphoproteins. J Virol 66:4295–4303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds AE, Ryckman BJ, Baines JD, Zhou Y, Liang L, Roller RJ (2001) UL31 and UL34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol 75:8803–8817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds AE, Wills EG, Roller RJ, Ryckman BJ, Baines JD (2002) Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J Virol 76:8939–8952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds AE, Liang L, Baines JD (2004) Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes UL31 and UL34. J Virol 78:5564–5575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochat RH, Liu X, Murata K, Nagayama K, Rixon FJ, Chiu W (2011) Seeing the portal in herpes simplex virus type 1 B capsids. J Virol 85:1871–1874

    Article  CAS  PubMed  Google Scholar 

  • Roller RJ, Zhou Y, Schnetzer R, Ferguson J, DeSalvo D (2000) Herpes simplex virus type 1 UL34 gene product is required for viral envelopment. J Virol 74:117–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roller RJ, Bjerke SL, Haugo AC, Hanson S (2010) Analysis of a charge cluster mutation of herpes simplex virus type 1 UL34 and its extragenic suppressor suggests a novel interaction between pUL34 and pUL31 that Is necessary for membrane curvature around capsids. J Virol 84:3921–3934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruebner BH, Miyai K, Slusser RJ, Wedemeyer P, Medearis DNJ (1964) Mouse cytomegalovirus infection. An electron microscopic study of hepatic parenchymal cells. Am J Pathol 44:799–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryckman BJ, Roller RJ (2004) Herpes simplex virus type 1 primary envelopment: UL34 protein modification and the US3-UL34 catalytic relationship. J Virol 78:399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sae-Ueng U, Liu T, Catalano CE, Huffman JB, Homa FL, Evilevitch A (2014) Major capsid reinforcement by a minor protein in herpesviruses and phage. Nucleic Acids Res 42:9096–9107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santarelli R, Farina A, Granato M, Gonnella R, Raffa S, Leone L, Bei R, Modesti A, Frati L, Torrisi MR, Faggioni A (2008) Identification and characterization of the product encoded by ORF69 of Kaposi’s sarcoma-associated herpesvirus. J Virol 82:4562–4572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirmer EC, Foisner R (2007) Proteins that associate with lamins: many faces, many functions. Exp Cell Res 313:2167–2179

    Article  CAS  PubMed  Google Scholar 

  • Schnee M, Ruzsics Z, Bubeck A, Koszinowski UH (2006) Common and specific properties of herpesvirus UL34/UL31 protein family members revealed by protein complementation assay. J Virol 80:11658–11666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholtes L, Baines JD (2009) Effects of major capsid proteins, capsid assembly, and DNA cleavage/packaging on the pUL17/pUL25 complex of herpes simplex virus 1. J Virol 83:12725–12737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrag JD, Prasad BV, Rixon FJ, Chiu W (1989) Three-dimensional structure of the HSV1 nucleocapsid. Cell 56:651–660

    Article  CAS  PubMed  Google Scholar 

  • Schumacher D, Tischer BK, Trapp S, Osterrieder N (2005) The protein encoded by the US3 orthologue of Marek’s disease virus is required for efficient de-envelopment of perinuclear virions and involved in actin stress fiber breakdown. J Virol 79:3987–3997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schur FK, Hagen WJ, Rumlova M, Ruml T, Muller B, Krausslich HG, Briggs JA (2015) Structure of the immature HIV-1 capsid in intact virus particles at 8.8 A resolution. Nature 517:505–508

    Article  CAS  PubMed  Google Scholar 

  • Schwartz J, Roizman B (1969) Similarities and differences in the development of laboratory strains and freshly isolated strains of herpes simplex virus in Hep-2 cells: electron microscopy. J Virol 4:879–889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Coen DM (2014) Comparison of effects of inhibitors of viral and cellular protein kinases on human cytomegalovirus disruption of nuclear lamina and nuclear egress. J Virol 88:10982–10985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma M, Kamil JP, Coughlin M, Reim NI, Coen DM (2014) Human cytomegalovirus UL50 and UL53 recruit viral protein kinase UL97, not protein kinase C, for disruption of nuclear lamina and nuclear egress in infected cells. J Virol 88:249–262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma M, Bender BJ, Kamil JP, Lye MF, Pesola JM, Reim NI, Hogle JM, Coen DM (2015) Human cytomegalovirus UL97 phosphorylates the viral nuclear egress complex. J Virol 89:523–534

    Article  PubMed  CAS  Google Scholar 

  • Shimi T, Pfleghaar K, Kojima S-i, Pack C-G, Solovei I, Goldman AE, Adam SA, Shumaker DK, Kinjo M, Cremer T, Goldman RD (2008) The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22:3409–3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimi T, Kittisopikul M, Tran J, Goldman AE, Adam SA, Zheng Y, Jaqaman K, Goldman RD (2015) Structural organization of nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy. Mol Biol Cell 26:4075–4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipkey FH, Erlandson RA, Bailey RB, Babcock VI, Southam CM (1967) Virus biographies. II. Growth of herpes simplex virus in tissue culture. Exp Mol Pathol 6:39–67

    Article  CAS  PubMed  Google Scholar 

  • Siminoff P, Menefee MG (1966) Normal and 5-bromodeoxyuridine-inhibited development of herpes simplex virus. An electron microscope study. Exp Cell Res 44:241–255

    Article  CAS  PubMed  Google Scholar 

  • Simpson-Holley M, Baines J, Roller R, Knipe DM (2004) Herpes simplex virus 1 U(L)31 and U(L)34 gene products promote the late maturation of viral replication compartments to the nuclear periphery. J Virol 78:5591–5600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson-Holley M, Colgrove RC, Nalepa G, Harper JW, Knipe DM (2005) Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection. J Virol 79:12840–12851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson-Holly M, Baines J, Roller R, Knipe D (2004) Herpes simplex virus 1 UL31 and UL34 promote the late maturation of viral replication compartments to the nuclear periphery. J Virol 78:5591–5600

    Article  CAS  Google Scholar 

  • Skepper JN, Whiteley A, Browne H, Minson A (2001) Herpes simplex virus nucleocapsids mature to progeny virions by an envelopment --> deenvelopment --> reenvelopment pathway. J Virol 75:5697–5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith GA, Gross SP, Enquist LW (2001) Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. Proc Natl Acad Sci U S A 98:3466–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speese Sean D, Ashley J, Jokhi V, Nunnari J, Barria R, Li Y, Ataman B, Koon A, Chang Y-T, Li Q, Moore Melissa J, Budnik V (2012) Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 149:832–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stackpole CW (1969) Herpes-type virus of the frog renal adenocarcinoma. I. Virus development in tumor transplants maintained at low temperature. J Virol 4:75–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoker MG, Smith KM, Ross RW (1958) Electron microscope studies of HeLa cells infected with herpes virus. J Gen Microbiol 19:244–249

    Article  CAS  PubMed  Google Scholar 

  • Stuurman N, Sasse B, Fisher PA (1996) Intermediate filament protein polymerization: molecular analysis of Drosophila nuclear lamin head-to-tail binding. J Struct Biol 117:1–15

    Article  CAS  PubMed  Google Scholar 

  • Tai SHS, Holz C, Engstrom MD, Cheng HH, Maes RK (2016) In vitro characterization of felid herpesvirus 1 (FHV-1) mutants generated by recombineering in a recombinant BAC vector. Virus Res 221:15–22

    Article  CAS  PubMed  Google Scholar 

  • Toropova K, Huffman JB, Homa FL, Conway JF (2011) The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention. J Virol 85:7513–7522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trus BL, Newcomb WW, Booy FP, Brown JC, Steven AC (1992) Distinct monoclonal antibodies separately label the hexons or the pentons of herpes simplex virus capsid. Proc Natl Acad Sci U S A 89:11508–11512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trus BL, Homa FL, Booy FP, Newcomb WW, Thomsen DR, Cheng N, Brown JC, Steven AC (1995) Herpes simplex virus capsids assembled in insect cells infected with recombinant baculoviruses: structural authenticity and localization of VP26. J Virol 69:7362–7366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trus BL, Booy FP, Newcomb WW, Brown JC, Homa FL, Thomsen DR, Steven AC (1996) The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. J Mol Biol 263:447–462

    Article  CAS  PubMed  Google Scholar 

  • Trus BL, Heymann JB, Nealon K, Cheng N, Newcomb WW, Brown JC, Kedes DH, Steven AC (2001) Capsid structure of Kaposi’s sarcoma-associated herpesvirus, a gammaherpesvirus, compared to those of an alphaherpesvirus, herpes simplex virus type 1, and a betaherpesvirus, cytomegalovirus. J Virol 75:2879–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trus BL, Cheng N, Newcomb WW, Homa FL, Brown JC, Steven AC (2004) Structure and polymorphism of the UL6 portal protein of herpes simplex virus type 1. J Virol 78:12668–12671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trus BL, Newcomb WW, Cheng N, Cardone G, Marekov L, Homa FL, Brown JC, Steven AC (2007) Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-Filled HSV-1 capsids. Mol Cell 26:479–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner EM, Brown RSH, Laudermilch E, Tsai P-L, Schlieker C (2015) The torsin activator LULL1 is required for efficient growth of herpes simplex virus 1. J Virol 89:8444–8452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villinger C, Neusser G, Kranz C, Walther P, Mertens T (2015) 3D analysis of HCMV induced-nuclear membrane structures by FIB/SEM tomography: insight into an unprecedented membrane morphology. Viruses 7:5686–5704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagenaar F, Pol JM, Peeters B, Gielkens AL, de Wind N, Kimman TG (1995) The US3-encoded protein kinase from pseudorabies virus affects egress of virions from the nucleus. J Gen Virol 76:1851–1859

    Article  CAS  PubMed  Google Scholar 

  • Walzer SA, Egerer-Sieber C, Sticht H, Sevvana M, Hohl K, Milbradt J, Muller YA, Marschall M (2015) Crystal structure of the human cytomegalovirus pUL50-pUL53 core nuclear egress Complex provides insight into a unique assembly scaffold for virus-host protein interactions. J Biol Chem 290:27452–27458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward PL, Ogle WO, Roizman B (1996) Assemblons: nuclear structures defined by aggregation of immature capsids and some tegument proteins of herpes simplex virus 1. J Virol 70:4623–4631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whiteley A, Bruun B, Minson T, Browne H (1999) Effects of targeting herpes simplex virus type 1 gD to the endoplasmic reticulum and trans-Golgi network. J Virol 73:9515–9520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wild P, Engels M, Senn C, Tobler K, Ziegler U, Schraner EM, Loepfe E, Ackermann M, Mueller M, Walther P (2005) Impairment of nuclear pores in bovine herpesvirus 1-infected MDBK cells. J Virol 79:1071–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wild P, Senn C, Manera CL, Sutter E, Schraner EM, Tobler K, Ackermann M, Ziegler U, Lucas MS, Kaech A (2009) Exploring the nuclear envelope of herpes simplex virus 1-infected cells by high-resolution microscopy. J Virol 83:408–419

    Article  CAS  PubMed  Google Scholar 

  • Wilson KL, Foisner R (2010) Lamin-binding proteins. Cold Spring Harb Perspect Biol 2:a000554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wisner TW, Wright C, Kato A, Mou F, Baines JD, Roller RJ, Johnson DC (2009) Herpes simplex virus glycoprotein B that promotes fusion at the nuclear envelope is phosphorylated in a manner dependent on the viral kinase US3 that also promotes nuclear egress. J Virol 83(7):3115–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH (2009) Membrane scission by the ESCRT-III complex. Nature 458:172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Pan S, Zhang L, Baines J, Roller R, Ames J, Yang M, Wang J, Chen D, Liu Y, Zhang C, Cao Y, He B (2016) Herpes simplex virus 1 induces phosphorylation and reorganization of lamin A/C through the gamma134.5 protein that facilitates nuclear egress. J Virol. doi:10.1128/JVI.01392-16

    Google Scholar 

  • Yamauchi Y, Shiba C, Goshima F, Nawa A, Murata T, Nishiyama Y (2001) Herpes simplex virus type 2 UL34 protein requires UL31 protein for its relocation to the internal nuclear membrane in transfected cells. J Gen Virol 82:1423–1428

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Baines JD (2011) Selection of HSV capsids for envelopment involves interaction between capsid surface components pUL31, pUL17, and pUL25. Proc Natl Acad Sci U S A 108:14276–14281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Wills E, Lim HY, Zhou ZH, Baines JD (2014) Association of herpes simplex virus pUL31 with capsid vertices and components of the capsid vertex-specific complex. J Virol 88:3815–3825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu D, Weller SK (1998) Genetic analysis of the UL 15 gene locus for the putative terminase of herpes simplex virus type 1. Virology 243:32–44

    Article  CAS  PubMed  Google Scholar 

  • Zeev-Ben-Mordehai T, Weberruss M, Lorenz M, Cheleski J, Hellberg T, Whittle C, El Omari K, Vasishtan D, Dent KC, Harlos K, Franzke K, Hagen C, Klupp BG, Antonin W, Mettenleiter TC, Grunewald K (2015) Crystal structure of the herpesvirus nuclear egress complex provides insights into inner nuclear membrane remodeling. Cell Rep 13:2645–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZH, He J, Jakana J, Tatman JD, Rixon FJ, Chiu W (1995) Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. Nat Struct Biol 2:1026–1030

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel D. Baines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Roller, R.J., Baines, J.D. (2017). Herpesvirus Nuclear Egress. In: Osterrieder, K. (eds) Cell Biology of Herpes Viruses. Advances in Anatomy, Embryology and Cell Biology, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-53168-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53168-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53167-0

  • Online ISBN: 978-3-319-53168-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics