Skip to main content

Nano Based Photocatalytic Degradation of Pharmaceuticals

  • Chapter
  • First Online:
Nanotechnologies for Environmental Remediation

Abstract

The removal of emerging contaminants from wastewater is urgently required and even more necessary for wastewater reuse. Since conventional WWTPs are not designed to treat water polluted with pharmaceuticals present at trace levels, the applied treatments are mostly ineffective in their removal. Therefore the use of more efficient processes for removing or improving the biodegradability of these compounds has become necessary. Among several advanced oxidation process, nano based photocatalytic processes represent a challenging alternative for pharmaceuticals removal due to its capacity to utilize the solar radiation as the light source, thus reducing significantly electric power required and therefore saving treatment costs and to operate without pH adjustment. This chapter is aimed at describing the state of the art in the heterogeneous photocatalytic degradation of pharmaceuticals using different nano particles (NPs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Abbreviations:

Pharmaceuticals

ACY:

Acyclovir

AMI:

Amiloride

AMX:

Amoxicillin

AMP:

Ampicillin

ATL:

Atenolol

B:

Bendroflumethiazide

CBZ:

Bendroflumethiazide

CAP:

Chloramphenicol

CIP:

Ciprofloxacin

CLX:

Cloxacillin

CDN:

Codeine

DCF:

Diclofenac

ERY:

Erythromycin

ERYA:

Erythromycylamine

ETA:

Ethacrynic acid

FLU:

Flumequine

F:

Furosemide

IBP:

Ibuprofene

LEVO:

Levofloxacin

LNC:

Lincomycin

LZP:

Lorazepam

MT:

Metronidazole

MOX:

Moxifloxacin

Naproxen:

NPX

NOR:

Norfloxacin

OFL:

Ofloxacin

OXA:

Oxacillin

PRC:

Paracetamol

PZQ:

Praziquantel

RIF:

Rifampicin

SMT:

Sulfanethazine

SMX:

Sulfamethoxazole

TC:

Tetracycline

TYL:

Tylosine

VAN:

Vancomycin

References

  • Abellán MN, Bayarri B, Gimènez J, Costa J (2007) Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl Catal B: Environ 74:233–241

    Article  Google Scholar 

  • Achilleos A, Hapeshi E, Xekoukoulotakis NP, Mantzavinos D, Fatta-Kassinos D (2010) Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chem Eng J 161(1):53–59

    Article  Google Scholar 

  • Agarwal S, Tyagi I, Gupta VK, Sohrabi M, Mohammadi S, Golikand AN, Fakhri A (2017) Iron doped SnO2/Co3O4 nanocomposites synthesized by sol-gel and precipitation method for metronidazole antibiotic degradation. Mater Sci Eng, C 70:178–183

    Article  Google Scholar 

  • Akiyama T, Savin MC (2010) Populations of antibiotic-resistant coliform bacteria change rapidly in a wastewater effluent dominated stream. Sci Total Environ 408:6192–6201

    Article  Google Scholar 

  • An T, Yang H, Li G, Song W, Cooper WJ, Nie X (2010) Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Appl Catal B 94(3):288–294

    Article  Google Scholar 

  • Barnes KK, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB (2008) A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I) Groundwater. Sci Total Environ 402(2):192–200

    Article  Google Scholar 

  • Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in U.S. Drink Water 43:547–603

    Google Scholar 

  • Batt AL, Bruce IB, Aga DS (2006) Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ pollut 142(2):295–302

    Google Scholar 

  • Hua-Lin Cai HL, Feng Wang F, Huan-De Li HD, Wen-Xing Peng WX, Rong-Hua Zhu RH, Deng Y, Jiang P, Yan M, Hu SM, Lei SY, Chen C (2014) Quantitative analysis of erythromycylamine in human plasma by liquid chromatography-tandem mass spectrometry and its application in a bioequivalence study of dirithromycin enteric-coated tablets with a special focus on the fragmentation pattern and carryover effect. J Chromatogr B 947–948:156–163

    Google Scholar 

  • Calza P, Sakkas VA, Medana C, Baiocchi C, Dimou A, Pelizzetti E, Albanis T (2006) Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal B 67(3):197–205

    Article  Google Scholar 

  • Carbajo J, Jiménez M, Miralles S, Malato S, Faraldos M, Bahamonde A (2016) Study of application of titania catalysts on solar photocatalysis: influence of type of pollutants and water matrices. Chem Eng J 291:64–73

    Article  Google Scholar 

  • Carotenuto M, Lofrano G, Siciliano A, Aliberti F, Guida M (2014) TiO2 photocatalytic degradation of caffeine and ecotoxicological assessment of oxidation by-products. Global Nest Journal 16 (3):265–275

    Google Scholar 

  • Chatzitakis A, Berberidou C, Paspaltsis I, Kyriakou G, Sklaviadis T, Poulios I (2008) Photocatalytic degradation and drug activity reduction of chloramphenicol. Water Res 42(1):386–394

    Google Scholar 

  • Čizmić M., Ljubas D, Ćurković L., Škorić I., Babić S. (2016) Kinetics and degradation pathways of photolytic and photocatalytic oxidation of the anthelmintic drug praziquantel. J Hazard Mater (in press). doi:10.1016/j.jhazmat.2016.04.065

  • Choina J, Kosslick H, Fischer C, Flechsig GU, Frunza L, Schulz A (2013) Photocatalytic decomposition of pharmaceutical ibuprofen pollutions in water over titania catalyst. Appl Catal B 129:589–598

    Article  Google Scholar 

  • Czech B, Buda W (2015) Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposites. Environ Res 137:176–184

    Article  Google Scholar 

  • Daneshvar N, Salari D, Khataee AR (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A: Chem 162:317–322

    Article  Google Scholar 

  • Elmolla ES, Chaudhuri M (2010) Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J Hazard Mater 173(1):445–449

    Article  Google Scholar 

  • El-Sayed GO, Dessouki HA, Jahin HS, Ibrahiem SS (2014) Photocatalytic degradation of metronidazole in aqueous solutions by copper oxide nanoparticles. J Basic Environ Sci 1:102–110

    Google Scholar 

  • Fuentefria DB, Ferreira AE, Corcao G (2011) Antibiotic-resistant Pseudomonas aeruginosa from hospital wastewater and superficial water: are they genetically related? J Environ Manage 92:250–255

    Article  Google Scholar 

  • Fukahori S, Fujiwara T (2015) Photocatalytic decomposition behavior and reaction pathway of sulfamethazine antibiotic using TiO2. J Environ Manage 157:103–110

    Article  Google Scholar 

  • Gao B, Dong S, Liu J, Liu L, Feng Q, Tan N, Liu T, Bo L, Wang L (2016) Identification of intermediates and transformation pathways derived from photocatalytic degradation of five antibiotics on ZnIn2S4. Chem Eng J 304:826–840

    Article  Google Scholar 

  • Garcia-Segura S, Cavalcanti EB, Brillas E (2014) Mineralization of the antibiotic chloramphenicol by solar photoelectro-Fenton: From stirred tank reactor to solar pre-pilot plant. Appl Catal B 144:588–598

    Article  Google Scholar 

  • Giancotti V, Medana C, Aigotti M, Pazzi M, Baiocchi C (2008) LC–high-resolution multiple stage spectrometric analysis of diuretic compounds Unusual mass fragmentation pathways. J Pharm Biomed Anal 48:462–466

    Article  Google Scholar 

  • Giraldo-Aguirre AL, Erazo-Erazo ED, Flórez-Acosta OA, Serna-Galvis EA, Torres-Palma RA (2015) TiO2 photocatalysis applied to the degradation and antimicrobial activity removal of oxacillin: Evaluation of matrix components, experimental parameters, degradation pathways and identification of organics by-products. J Photochem Photobiol, A 311:95–103

    Article  Google Scholar 

  • Gomez-Solís C, Ballesteros JC, Torres-Martínez LM, Juarez-Ramírez I, Torres LAD, Zarazua-Morin ME, Lee SW (2015). Rapid synthesis of ZnO nano-corncobs from Nital solution and its application in the photodegradation of methyl orange. J Photochem Photobiol A Chem 298:49–54

    Google Scholar 

  • Guillard C, Lachheb H, Houas A, Ksibi M, Elaloui E, Herrmann JM (2003) Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. J Photochem Photobiol A: Chem 158:27–36

    Article  Google Scholar 

  • Haque MM, Muneer M (2007) Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide. J Hazard Mater 145(1): 51–57

    Google Scholar 

  • Hinojosa-Reyes M, Arriaga S, Diaz-Torres LA, Rodríguez-González V (2013) Gas-phase photocatalytic decomposition of ethylbenzene over perlite granules coated with indium doped TiO2. Chem Eng J 224:106–113. doi:10.1016/j.cej.2013.01.066

  • Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225(1):109–118

    Google Scholar 

  • Hu X, Yang J, Zhang J (2011) Magnetic loading of TiO2/SiO2/Fe3O4 nanoparticles on electrode surface for photoelectrocatalytic degradation of diclofenac. J Hazard Mater 196:220–227

    Article  Google Scholar 

  • Hu X, Zhou Q, Luo Y (2010) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158(9):2992–2998

    Google Scholar 

  • Isidori M, Bellotta M, Cangiano M, Parrella A (2009) Estrogenic activity of pharmaceuticals in the aquatic environment. Environ Int 35:826–829

    Article  Google Scholar 

  • Ji Y, Zhou L, Ferronato C, Yang X, Salvador A, Zeng C, Chovelon JM (2013) Photocatalytic degradation of atenolol in aqueous titanium dioxide suspensions: kinetics, intermediates and degradation pathways. J Photochem Photobiol, A 254:35–44

    Article  Google Scholar 

  • Jimenez-Villarin J, Serra-Clusellas A, Martínez C, Conesa A, Garcia-Montaño J, Moyano E (2016) Liquid chromatography coupled to tandem and high resolution mass spectrometry for the characterisation of ofloxacin transformation products after titanium dioxide photocatalysis. J Chromatogr A 1443:201–210

    Article  Google Scholar 

  • Kanakaraju D, Kockler J, Motti CA, Glass BD, Oelgemöller M (2015a) Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. Appl Catal B 166:45–55

    Article  Google Scholar 

  • Kanakaraju D, Motti CA, Glass BD, Oelgemöller M (2015b) TiO2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates. Chemosphere 139:579–588

    Article  Google Scholar 

  • Karcı A, Balcıoğlu IA (2009) Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci Total Environ 407(16):4652–4664

    Google Scholar 

  • Klauson D, Babkina J, Stepanova K, Krichevskaya M, Preis S (2010) Aqueous photocatalytic oxidation of amoxicillin. Catal Today 151(1):39–45

    Article  Google Scholar 

  • Kuo CS, Lin CF, Hong PKA (2016) Photocatalytic mineralization of codeine by UV-A/TiO2—kinetics, intermediates, and pathways. J Hazard Mater 301:137–144

    Article  Google Scholar 

  • Lair A, Ferronato C, Chovelon JM, Herrmann JM (2008) Naphthalene degradation in water by heterogeneous photocatalysis: an investigation of the influence of inorganic anions. J Photochem Photobiol A: Chem 193:193–203

    Article  Google Scholar 

  • Lee, KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448

    Google Scholar 

  • Li G, Nie X, Gao Y, An T (2016) Can environmental pharmaceuticals be photocatalytically degraded and completely mineralized in water using g-C3N4/TiO2 under visible light irradiation?—implications of persistent toxic intermediates. Appl Catal B 180:726–732

    Article  Google Scholar 

  • Libralato G, Annamaria VG, Francesco A (2010) How toxic is toxic? A proposal for wastewater toxicity hazard assessment. Ecotoxicol Environ Saf 73(7):1602–1611

    Google Scholar 

  • Libralato G, Gentile E, Ghirardini AV (2016) Wastewater effects on Phaeodactylum tricornutum (Bohlin): setting up a classification system. Ecol. Ind 60:31–37

    Google Scholar 

  • Libralato G, Minetto D, Totaro S, Mičetić I, Pigozzo A, Sabbioni E, Ghirardini AV (2013) Embryotoxicity of TiO2 nanoparticles to Mytilus galloprovincialis (Lmk). Mar Environ Res 92:71–78

    Google Scholar 

  • Libralato G (2014) The case of Artemia spp. in nanoecotoxicology. Mar Environ Res 101:38–43

    Google Scholar 

  • Lofrano G, Carotenuto M, Senem Uyguner C, Vitagliano A, Siciliano A., Guida M (2014) An integrated chemical and ecotoxicological assessment for the photocatalytic degradation of vancomycin. Environ Tech 35(10):1234–1242

    Google Scholar 

  • Lofrano G, Libralato G, Adinolfi R, Siciliano A., Iannece P, Guida M, Giugni M, Volpi Ghirardini A, Carotenuto M (2016) Photocatalytic degradation of the antibiotic chloramphenicol and effluent toxicity effects. Ecotox Environ Saf 123:65–71

    Google Scholar 

  • Lu X, Jiang J, Sun K, Cui D (2011) Applied surface science characterization and photocatalytic activity of Zn2+–TiO2/AC composite photocatalyst. Appl Surf Sci 258:1656–1661. doi:10.1016/j.apsusc.2011.09.042

    Article  Google Scholar 

  • Martínez C, Fernández MI, Santaballa JA, Faria J (2011) Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl Catal B 107(1):110–118

    Article  Google Scholar 

  • Méndez-Arriaga F, Esplugas S, Giménez J (2008) Photocatalytic degradation of nonsteroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res 42:585–594

    Article  Google Scholar 

  • Mboula VM, Hequet V, Gru Y, Colin R, Andres Y (2012) Assessment of the efficiency of photocatalysis on tetracycline biodegradation. J Hazard Mater 209:355–364

    Article  Google Scholar 

  • Michael I, Achilleos A, Lambropoulou D, Osorio Torrens V, Pérez S, Petrović M, Barceló D, Fatta-Kassinos D (2014) Proposed transformation pathway and evolution profile of diclofenac and ibuprofen transformation products during (sono)photocatalysis. Appl Catal B 147:1015–1027

    Article  Google Scholar 

  • Mitoraj D, Kisch H (2008) the nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angew Chem Int Ed 47(51):9975–9978

    Article  Google Scholar 

  • Mitoraj D, Kisch H (2010) On the mechanism of urea-induced titania modification. Chem A Eur J 16(1):261–269

    Article  Google Scholar 

  • Moustakas NG, Kontos AG, Likodimos V, Katsaros F, Boukos N, Tsoutsou D, Falaras P (2013) Inorganic–organic core–shell titania nanoparticles for efficient visible light activated photocatalysis. Appl Catal B 130:14–24

    Article  Google Scholar 

  • Nasuhoglu D, Rodayan A, Berk D, Yargeau V (2012) Removal of the antibiotic levofloxacin (LEVO) in water by ozonation and TiO2 photocatalysis. Chem Eng J 189:41–48

    Article  Google Scholar 

  • Paola AD, Addamo M, Augugliaro V, García-López E, Loddo V, Marcì G, Palmisano L (2006) Photodegradation of lincomycin in aqueous solution. Inter J Photoenergy 1–6(47418)

    Google Scholar 

  • Palominos R, Freer J, Mondaca MA, Mansilla HD (2008) Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine. J Photochem Photobiol Chem 193:139–145

    Article  Google Scholar 

  • Paschoalino FCS, Paschoalino MP, Jord E, de Figueiredo Jardim W (2012) Evaluation of TiO2, ZnO, CuO and Ga2 O3 on the Photocatalytic Degradation of Phenol Using an Annular-Flow Photocatalytic Reactor

    Google Scholar 

  • Paul T, Dodd MC, Strathmann TJ (2010) Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity. Water Res 44(10):3121–3132

    Article  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Entezari MH (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  Google Scholar 

  • Pérez-Estrada LA, Maldonado MI, Gernjak W, Agüera A, Fernández-Alba AR, Ballesteros MM, Malato S (2005) Decomposition of diclofenac by solar driven photocatalysis at pilot plant scale. Catal Today 101(3):219–226

    Article  Google Scholar 

  • Rizzo L, Meric S, Kassinos D, Guida M, Russo F, Belgiorno V (2009) Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res 43(4):979–988

    Article  Google Scholar 

  • Xekoukoulotakis N, Xinidis N, Chroni M, Mantzavinos D, Venieri D, Hapeshi E, Fatta-Kassinos D (2010) UV-A/TiO2 photocatalytic decomposition of erythromycin in water: factors affecting mineralization and antibiotic activity. Catal Today 151:29–33

    Article  Google Scholar 

  • Sakthivel TS, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77

    Google Scholar 

  • Salaeh S, Perisic DJ, Biosic M, Kusic H, Babic S, Stangar UL, Bozic AL (2016) Diclofenac removal by simulated solar assisted photocatalysis using TiO2-based zeolite catalyst; mechanisms, pathways and environmental aspects. Chem Eng J 304:289–302

    Article  Google Scholar 

  • Sousa MA, Lacina O, Hrádková P, Pulkrabová J, Vilar VJP, Gonçalves C, Boaventura RAR, Hajšlová J, Alpendurada MF (2013) Lorazepam photofate under photolysis and TiO2-assisted photocatalysis: Identification and evolution profiles of by-products formed during phototreatment of a WWTP effluent. Water Res 47:5584–5593

    Article  Google Scholar 

  • Teixeira S, Gurke R, Eckert H, Kühn K, Fauler J, Cuniberti G (2016) Photocatalytic degradation of pharmaceuticals present in conventional treated wastewater by nanoparticle suspensions. J Environ Chem Eng 4(1):287–292

    Google Scholar 

  • Vaiano V, Sacco O, Sannino D, Ciambelli P (2015) Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts. Chem Eng J 261:3–8

    Google Scholar 

  • Vilar VJP, Boaventura RAR, Faria JL (2013) Photocatalytic activity of TiO2-coated glass raschig rings on the degradation of phenolic derivatives under simulated solar light irradiation. Chem Eng J 224:32–38. doi:10.1016/j.cej.2012.11.027

    Article  Google Scholar 

  • Yap P-S, Lim T-T, Srinivasan M (2011) Nitrogen-doped TiO2/AC bi-functional composite prepared by two-stage calcination for enhanced synergistic removal of hydrophobic pollutant using solar irradiation. Catal Today 161:46–52. doi:10.1016/j.cattod.2010.09.024

    Article  Google Scholar 

  • Van Doorslaer X, Demeestere K, Heynderickx PM, Van Langenhove H, Dewulf J (2011) UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption. Appl Catal B: Environ 101:540–547

    Google Scholar 

  • Van Doorslaer X, Haylamicheal ID, Dewulf J, Van Langenhove H, Janssen CR, Demeestere K (2015) Heterogeneous photocatalysis of moxifloxacin in water: chemical transformation and ecotoxicity. Chemosphere 119:S75–S80

    Article  Google Scholar 

  • Yahiat S, Fourcade F, Brosillon S, Amrane A (2011) Removal of antibiotics by an integrated process coupling photocatalysis and biological treatment–case of tetracycline and tylosin. Int Biodeterior Biodegradation 65(7):997–1003

    Article  Google Scholar 

  • Yan C, Yang Y, Zhou J, Liu M, Nie M, Shi H, Gu L (2013) Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment. Environ Pollut 175:22–29

    Google Scholar 

  • Yang JF, Ying GG, Zhao JL, Tao R, Su HC, Liu YS (2011) Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China. J Environ Sci Health B 46(3):272–280

    Google Scholar 

  • Yang L, Liya EY, Ray MB (2008) Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Res 42(13):3480–3488

    Article  Google Scholar 

  • Zhang J, Fu D, Xu Y, Liu C (2010) Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO2 as photocatalyist by response surface methodology. J Environ Sci 22(8):1281–1289

    Article  Google Scholar 

  • Zhou LJ, Ying GG, Zhao JL, Yang JF, Wang L, Yang B, Liu S (2011) Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ Pollut 159(7):1877–1885

    Google Scholar 

  • Zhu C, Wang X, Huang Q, Huang L, Xie J, Qing C et al (2013) Removal of gaseous carbon bisulfide using dielectric barrier discharge plasmas combined with TiO2 coated attapulgite catalyst. Chem Eng J 225:567–573. doi:10.1016/j.cej.2013.03.107

  • Zuccato E, Castiglioni S, Fanelli R (2005) Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. J Hazard Mater 122(3):205–209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giusy Lofrano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lofrano, G., Libralato, G., Sharma, S.K., Carotenuto, M. (2017). Nano Based Photocatalytic Degradation of Pharmaceuticals. In: Lofrano, G., Libralato, G., Brown, J. (eds) Nanotechnologies for Environmental Remediation. Springer, Cham. https://doi.org/10.1007/978-3-319-53162-5_7

Download citation

Publish with us

Policies and ethics