Nano Based Photocatalytic Degradation of Pharmaceuticals

  • Giusy LofranoEmail author
  • Giovanni Libralato
  • Sanjay K. Sharma
  • Maurizio Carotenuto


The removal of emerging contaminants from wastewater is urgently required and even more necessary for wastewater reuse. Since conventional WWTPs are not designed to treat water polluted with pharmaceuticals present at trace levels, the applied treatments are mostly ineffective in their removal. Therefore the use of more efficient processes for removing or improving the biodegradability of these compounds has become necessary. Among several advanced oxidation process, nano based photocatalytic processes represent a challenging alternative for pharmaceuticals removal due to its capacity to utilize the solar radiation as the light source, thus reducing significantly electric power required and therefore saving treatment costs and to operate without pH adjustment. This chapter is aimed at describing the state of the art in the heterogeneous photocatalytic degradation of pharmaceuticals using different nano particles (NPs).


Nanoparticles Emerging contaminants Catalysts Nanomaterials 

































Ethacrynic acid










































  1. Abellán MN, Bayarri B, Gimènez J, Costa J (2007) Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl Catal B: Environ 74:233–241CrossRefGoogle Scholar
  2. Achilleos A, Hapeshi E, Xekoukoulotakis NP, Mantzavinos D, Fatta-Kassinos D (2010) Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chem Eng J 161(1):53–59CrossRefGoogle Scholar
  3. Agarwal S, Tyagi I, Gupta VK, Sohrabi M, Mohammadi S, Golikand AN, Fakhri A (2017) Iron doped SnO2/Co3O4 nanocomposites synthesized by sol-gel and precipitation method for metronidazole antibiotic degradation. Mater Sci Eng, C 70:178–183CrossRefGoogle Scholar
  4. Akiyama T, Savin MC (2010) Populations of antibiotic-resistant coliform bacteria change rapidly in a wastewater effluent dominated stream. Sci Total Environ 408:6192–6201CrossRefGoogle Scholar
  5. An T, Yang H, Li G, Song W, Cooper WJ, Nie X (2010) Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Appl Catal B 94(3):288–294CrossRefGoogle Scholar
  6. Barnes KK, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB (2008) A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I) Groundwater. Sci Total Environ 402(2):192–200CrossRefGoogle Scholar
  7. Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in U.S. Drink Water 43:547–603Google Scholar
  8. Batt AL, Bruce IB, Aga DS (2006) Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ pollut 142(2):295–302Google Scholar
  9. Hua-Lin Cai HL, Feng Wang F, Huan-De Li HD, Wen-Xing Peng WX, Rong-Hua Zhu RH, Deng Y, Jiang P, Yan M, Hu SM, Lei SY, Chen C (2014) Quantitative analysis of erythromycylamine in human plasma by liquid chromatography-tandem mass spectrometry and its application in a bioequivalence study of dirithromycin enteric-coated tablets with a special focus on the fragmentation pattern and carryover effect. J Chromatogr B 947–948:156–163Google Scholar
  10. Calza P, Sakkas VA, Medana C, Baiocchi C, Dimou A, Pelizzetti E, Albanis T (2006) Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal B 67(3):197–205CrossRefGoogle Scholar
  11. Carbajo J, Jiménez M, Miralles S, Malato S, Faraldos M, Bahamonde A (2016) Study of application of titania catalysts on solar photocatalysis: influence of type of pollutants and water matrices. Chem Eng J 291:64–73CrossRefGoogle Scholar
  12. Carotenuto M, Lofrano G, Siciliano A, Aliberti F, Guida M (2014) TiO2 photocatalytic degradation of caffeine and ecotoxicological assessment of oxidation by-products. Global Nest Journal 16 (3):265–275Google Scholar
  13. Chatzitakis A, Berberidou C, Paspaltsis I, Kyriakou G, Sklaviadis T, Poulios I (2008) Photocatalytic degradation and drug activity reduction of chloramphenicol. Water Res 42(1):386–394Google Scholar
  14. Čizmić M., Ljubas D, Ćurković L., Škorić I., Babić S. (2016) Kinetics and degradation pathways of photolytic and photocatalytic oxidation of the anthelmintic drug praziquantel. J Hazard Mater (in press). doi: 10.1016/j.jhazmat.2016.04.065
  15. Choina J, Kosslick H, Fischer C, Flechsig GU, Frunza L, Schulz A (2013) Photocatalytic decomposition of pharmaceutical ibuprofen pollutions in water over titania catalyst. Appl Catal B 129:589–598CrossRefGoogle Scholar
  16. Czech B, Buda W (2015) Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposites. Environ Res 137:176–184CrossRefGoogle Scholar
  17. Daneshvar N, Salari D, Khataee AR (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A: Chem 162:317–322CrossRefGoogle Scholar
  18. Elmolla ES, Chaudhuri M (2010) Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J Hazard Mater 173(1):445–449CrossRefGoogle Scholar
  19. El-Sayed GO, Dessouki HA, Jahin HS, Ibrahiem SS (2014) Photocatalytic degradation of metronidazole in aqueous solutions by copper oxide nanoparticles. J Basic Environ Sci 1:102–110Google Scholar
  20. Fuentefria DB, Ferreira AE, Corcao G (2011) Antibiotic-resistant Pseudomonas aeruginosa from hospital wastewater and superficial water: are they genetically related? J Environ Manage 92:250–255CrossRefGoogle Scholar
  21. Fukahori S, Fujiwara T (2015) Photocatalytic decomposition behavior and reaction pathway of sulfamethazine antibiotic using TiO2. J Environ Manage 157:103–110CrossRefGoogle Scholar
  22. Gao B, Dong S, Liu J, Liu L, Feng Q, Tan N, Liu T, Bo L, Wang L (2016) Identification of intermediates and transformation pathways derived from photocatalytic degradation of five antibiotics on ZnIn2S4. Chem Eng J 304:826–840CrossRefGoogle Scholar
  23. Garcia-Segura S, Cavalcanti EB, Brillas E (2014) Mineralization of the antibiotic chloramphenicol by solar photoelectro-Fenton: From stirred tank reactor to solar pre-pilot plant. Appl Catal B 144:588–598CrossRefGoogle Scholar
  24. Giancotti V, Medana C, Aigotti M, Pazzi M, Baiocchi C (2008) LC–high-resolution multiple stage spectrometric analysis of diuretic compounds Unusual mass fragmentation pathways. J Pharm Biomed Anal 48:462–466CrossRefGoogle Scholar
  25. Giraldo-Aguirre AL, Erazo-Erazo ED, Flórez-Acosta OA, Serna-Galvis EA, Torres-Palma RA (2015) TiO2 photocatalysis applied to the degradation and antimicrobial activity removal of oxacillin: Evaluation of matrix components, experimental parameters, degradation pathways and identification of organics by-products. J Photochem Photobiol, A 311:95–103CrossRefGoogle Scholar
  26. Gomez-Solís C, Ballesteros JC, Torres-Martínez LM, Juarez-Ramírez I, Torres LAD, Zarazua-Morin ME, Lee SW (2015). Rapid synthesis of ZnO nano-corncobs from Nital solution and its application in the photodegradation of methyl orange. J Photochem Photobiol A Chem 298:49–54Google Scholar
  27. Guillard C, Lachheb H, Houas A, Ksibi M, Elaloui E, Herrmann JM (2003) Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. J Photochem Photobiol A: Chem 158:27–36CrossRefGoogle Scholar
  28. Haque MM, Muneer M (2007) Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide. J Hazard Mater 145(1): 51–57Google Scholar
  29. Hinojosa-Reyes M, Arriaga S, Diaz-Torres LA, Rodríguez-González V (2013) Gas-phase photocatalytic decomposition of ethylbenzene over perlite granules coated with indium doped TiO2. Chem Eng J 224:106–113. doi: 10.1016/j.cej.2013.01.066
  30. Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225(1):109–118Google Scholar
  31. Hu X, Yang J, Zhang J (2011) Magnetic loading of TiO2/SiO2/Fe3O4 nanoparticles on electrode surface for photoelectrocatalytic degradation of diclofenac. J Hazard Mater 196:220–227CrossRefGoogle Scholar
  32. Hu X, Zhou Q, Luo Y (2010) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158(9):2992–2998Google Scholar
  33. Isidori M, Bellotta M, Cangiano M, Parrella A (2009) Estrogenic activity of pharmaceuticals in the aquatic environment. Environ Int 35:826–829CrossRefGoogle Scholar
  34. Ji Y, Zhou L, Ferronato C, Yang X, Salvador A, Zeng C, Chovelon JM (2013) Photocatalytic degradation of atenolol in aqueous titanium dioxide suspensions: kinetics, intermediates and degradation pathways. J Photochem Photobiol, A 254:35–44CrossRefGoogle Scholar
  35. Jimenez-Villarin J, Serra-Clusellas A, Martínez C, Conesa A, Garcia-Montaño J, Moyano E (2016) Liquid chromatography coupled to tandem and high resolution mass spectrometry for the characterisation of ofloxacin transformation products after titanium dioxide photocatalysis. J Chromatogr A 1443:201–210CrossRefGoogle Scholar
  36. Kanakaraju D, Kockler J, Motti CA, Glass BD, Oelgemöller M (2015a) Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. Appl Catal B 166:45–55CrossRefGoogle Scholar
  37. Kanakaraju D, Motti CA, Glass BD, Oelgemöller M (2015b) TiO2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates. Chemosphere 139:579–588CrossRefGoogle Scholar
  38. Karcı A, Balcıoğlu IA (2009) Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci Total Environ 407(16):4652–4664Google Scholar
  39. Klauson D, Babkina J, Stepanova K, Krichevskaya M, Preis S (2010) Aqueous photocatalytic oxidation of amoxicillin. Catal Today 151(1):39–45CrossRefGoogle Scholar
  40. Kuo CS, Lin CF, Hong PKA (2016) Photocatalytic mineralization of codeine by UV-A/TiO2—kinetics, intermediates, and pathways. J Hazard Mater 301:137–144CrossRefGoogle Scholar
  41. Lair A, Ferronato C, Chovelon JM, Herrmann JM (2008) Naphthalene degradation in water by heterogeneous photocatalysis: an investigation of the influence of inorganic anions. J Photochem Photobiol A: Chem 193:193–203CrossRefGoogle Scholar
  42. Lee, KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448Google Scholar
  43. Li G, Nie X, Gao Y, An T (2016) Can environmental pharmaceuticals be photocatalytically degraded and completely mineralized in water using g-C3N4/TiO2 under visible light irradiation?—implications of persistent toxic intermediates. Appl Catal B 180:726–732CrossRefGoogle Scholar
  44. Libralato G, Annamaria VG, Francesco A (2010) How toxic is toxic? A proposal for wastewater toxicity hazard assessment. Ecotoxicol Environ Saf 73(7):1602–1611Google Scholar
  45. Libralato G, Gentile E, Ghirardini AV (2016) Wastewater effects on Phaeodactylum tricornutum (Bohlin): setting up a classification system. Ecol. Ind 60:31–37Google Scholar
  46. Libralato G, Minetto D, Totaro S, Mičetić I, Pigozzo A, Sabbioni E, Ghirardini AV (2013) Embryotoxicity of TiO2 nanoparticles to Mytilus galloprovincialis (Lmk). Mar Environ Res 92:71–78Google Scholar
  47. Libralato G (2014) The case of Artemia spp. in nanoecotoxicology. Mar Environ Res 101:38–43Google Scholar
  48. Lofrano G, Carotenuto M, Senem Uyguner C, Vitagliano A, Siciliano A., Guida M (2014) An integrated chemical and ecotoxicological assessment for the photocatalytic degradation of vancomycin. Environ Tech 35(10):1234–1242Google Scholar
  49. Lofrano G, Libralato G, Adinolfi R, Siciliano A., Iannece P, Guida M, Giugni M, Volpi Ghirardini A, Carotenuto M (2016) Photocatalytic degradation of the antibiotic chloramphenicol and effluent toxicity effects. Ecotox Environ Saf 123:65–71 Google Scholar
  50. Lu X, Jiang J, Sun K, Cui D (2011) Applied surface science characterization and photocatalytic activity of Zn2+–TiO2/AC composite photocatalyst. Appl Surf Sci 258:1656–1661. doi: 10.1016/j.apsusc.2011.09.042 CrossRefGoogle Scholar
  51. Martínez C, Fernández MI, Santaballa JA, Faria J (2011) Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl Catal B 107(1):110–118CrossRefGoogle Scholar
  52. Méndez-Arriaga F, Esplugas S, Giménez J (2008) Photocatalytic degradation of nonsteroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res 42:585–594CrossRefGoogle Scholar
  53. Mboula VM, Hequet V, Gru Y, Colin R, Andres Y (2012) Assessment of the efficiency of photocatalysis on tetracycline biodegradation. J Hazard Mater 209:355–364CrossRefGoogle Scholar
  54. Michael I, Achilleos A, Lambropoulou D, Osorio Torrens V, Pérez S, Petrović M, Barceló D, Fatta-Kassinos D (2014) Proposed transformation pathway and evolution profile of diclofenac and ibuprofen transformation products during (sono)photocatalysis. Appl Catal B 147:1015–1027CrossRefGoogle Scholar
  55. Mitoraj D, Kisch H (2008) the nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angew Chem Int Ed 47(51):9975–9978CrossRefGoogle Scholar
  56. Mitoraj D, Kisch H (2010) On the mechanism of urea-induced titania modification. Chem A Eur J 16(1):261–269CrossRefGoogle Scholar
  57. Moustakas NG, Kontos AG, Likodimos V, Katsaros F, Boukos N, Tsoutsou D, Falaras P (2013) Inorganic–organic core–shell titania nanoparticles for efficient visible light activated photocatalysis. Appl Catal B 130:14–24CrossRefGoogle Scholar
  58. Nasuhoglu D, Rodayan A, Berk D, Yargeau V (2012) Removal of the antibiotic levofloxacin (LEVO) in water by ozonation and TiO2 photocatalysis. Chem Eng J 189:41–48CrossRefGoogle Scholar
  59. Paola AD, Addamo M, Augugliaro V, García-López E, Loddo V, Marcì G, Palmisano L (2006) Photodegradation of lincomycin in aqueous solution. Inter J Photoenergy 1–6(47418)Google Scholar
  60. Palominos R, Freer J, Mondaca MA, Mansilla HD (2008) Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine. J Photochem Photobiol Chem 193:139–145CrossRefGoogle Scholar
  61. Paschoalino FCS, Paschoalino MP, Jord E, de Figueiredo Jardim W (2012) Evaluation of TiO2, ZnO, CuO and Ga2 O3 on the Photocatalytic Degradation of Phenol Using an Annular-Flow Photocatalytic ReactorGoogle Scholar
  62. Paul T, Dodd MC, Strathmann TJ (2010) Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity. Water Res 44(10):3121–3132CrossRefGoogle Scholar
  63. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Entezari MH (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349CrossRefGoogle Scholar
  64. Pérez-Estrada LA, Maldonado MI, Gernjak W, Agüera A, Fernández-Alba AR, Ballesteros MM, Malato S (2005) Decomposition of diclofenac by solar driven photocatalysis at pilot plant scale. Catal Today 101(3):219–226CrossRefGoogle Scholar
  65. Rizzo L, Meric S, Kassinos D, Guida M, Russo F, Belgiorno V (2009) Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res 43(4):979–988CrossRefGoogle Scholar
  66. Xekoukoulotakis N, Xinidis N, Chroni M, Mantzavinos D, Venieri D, Hapeshi E, Fatta-Kassinos D (2010) UV-A/TiO2 photocatalytic decomposition of erythromycin in water: factors affecting mineralization and antibiotic activity. Catal Today 151:29–33CrossRefGoogle Scholar
  67. Sakthivel TS, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77Google Scholar
  68. Salaeh S, Perisic DJ, Biosic M, Kusic H, Babic S, Stangar UL, Bozic AL (2016) Diclofenac removal by simulated solar assisted photocatalysis using TiO2-based zeolite catalyst; mechanisms, pathways and environmental aspects. Chem Eng J 304:289–302CrossRefGoogle Scholar
  69. Sousa MA, Lacina O, Hrádková P, Pulkrabová J, Vilar VJP, Gonçalves C, Boaventura RAR, Hajšlová J, Alpendurada MF (2013) Lorazepam photofate under photolysis and TiO2-assisted photocatalysis: Identification and evolution profiles of by-products formed during phototreatment of a WWTP effluent. Water Res 47:5584–5593CrossRefGoogle Scholar
  70. Teixeira S, Gurke R, Eckert H, Kühn K, Fauler J, Cuniberti G (2016) Photocatalytic degradation of pharmaceuticals present in conventional treated wastewater by nanoparticle suspensions. J Environ Chem Eng 4(1):287–292Google Scholar
  71. Vaiano V, Sacco O, Sannino D, Ciambelli P (2015) Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts. Chem Eng J 261:3–8Google Scholar
  72. Vilar VJP, Boaventura RAR, Faria JL (2013) Photocatalytic activity of TiO2-coated glass raschig rings on the degradation of phenolic derivatives under simulated solar light irradiation. Chem Eng J 224:32–38. doi: 10.1016/j.cej.2012.11.027 CrossRefGoogle Scholar
  73. Yap P-S, Lim T-T, Srinivasan M (2011) Nitrogen-doped TiO2/AC bi-functional composite prepared by two-stage calcination for enhanced synergistic removal of hydrophobic pollutant using solar irradiation. Catal Today 161:46–52. doi: 10.1016/j.cattod.2010.09.024 CrossRefGoogle Scholar
  74. Van Doorslaer X, Demeestere K, Heynderickx PM, Van Langenhove H, Dewulf J (2011) UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption. Appl Catal B: Environ 101:540–547Google Scholar
  75. Van Doorslaer X, Haylamicheal ID, Dewulf J, Van Langenhove H, Janssen CR, Demeestere K (2015) Heterogeneous photocatalysis of moxifloxacin in water: chemical transformation and ecotoxicity. Chemosphere 119:S75–S80CrossRefGoogle Scholar
  76. Yahiat S, Fourcade F, Brosillon S, Amrane A (2011) Removal of antibiotics by an integrated process coupling photocatalysis and biological treatment–case of tetracycline and tylosin. Int Biodeterior Biodegradation 65(7):997–1003CrossRefGoogle Scholar
  77. Yan C, Yang Y, Zhou J, Liu M, Nie M, Shi H, Gu L (2013) Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment. Environ Pollut 175:22–29Google Scholar
  78. Yang JF, Ying GG, Zhao JL, Tao R, Su HC, Liu YS (2011) Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China. J Environ Sci Health B 46(3):272–280Google Scholar
  79. Yang L, Liya EY, Ray MB (2008) Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Res 42(13):3480–3488CrossRefGoogle Scholar
  80. Zhang J, Fu D, Xu Y, Liu C (2010) Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO2 as photocatalyist by response surface methodology. J Environ Sci 22(8):1281–1289CrossRefGoogle Scholar
  81. Zhou LJ, Ying GG, Zhao JL, Yang JF, Wang L, Yang B, Liu S (2011) Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ Pollut 159(7):1877–1885Google Scholar
  82. Zhu C, Wang X, Huang Q, Huang L, Xie J, Qing C et al (2013) Removal of gaseous carbon bisulfide using dielectric barrier discharge plasmas combined with TiO2 coated attapulgite catalyst. Chem Eng J 225:567–573. doi: 10.1016/j.cej.2013.03.107
  83. Zuccato E, Castiglioni S, Fanelli R (2005) Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. J Hazard Mater 122(3):205–209Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Giusy Lofrano
    • 1
    Email author
  • Giovanni Libralato
    • 2
    • 3
  • Sanjay K. Sharma
    • 4
  • Maurizio Carotenuto
    • 1
  1. 1.Department of Chemistry and BiologyUniversity of SalernoFisciano, SalernoItaly
  2. 2.Department of Environmental Sciences, Informatics and StatisticsUniversity Cà Foscari VeniceVenezia-MestreItaly
  3. 3.Department of BiologyUniversity of Naples Federico II, Complesso Universitario di Monte S. AngeloNaplesItaly
  4. 4.Green Chemistry and Sustainability Research Group, Department of ChemistryJECRC UniversityJaipurIndia

Personalised recommendations