Advertisement

Nanomaterials for Adsorption and Heterogeneous Reaction in Water Decontamination

  • Chun ZhaoEmail author
  • Yuanyuan Liu
  • Yongjun Sun
  • Jiangya Ma
  • Yunhua Zhu
  • Zhihua Sun
  • Zhaoyang Wang
  • Lei Ding
  • Guang Yang
  • Junfeng Li
  • Liqiang Zhou
  • Jun Wang
  • Guocheng Zhu
  • Peng Zhang
  • Huifang Wu
  • Huaili Zheng
Chapter
  • 1k Downloads

Abstract

In recent decades, nanomaterials have been intensively studied for water decontamination, especially for contaminants of emerging concern. Details are provided on a series of engineered nanomaterials for water decontamination by the mechanisms of adsorption, heterogeneous oxidation, and reduction. The degradation, mineralization, and detoxification of various organic contaminants and removal of several inorganic pollutants in aqueous environment by nanomaterials, evaluation of the feasibility of applying nanotechnologies in water industry are also discussed.

Keywords

Nanomaterials Adsorption Heterogeneous oxidation Heterogeneous reduction Carbon nanotubes Graphene Magnetic nano-adsorbents Titanium dioxide Zinc oxide Iron-based nanomaterials Nano zerovalent iron Metallic nanomaterials FeS nanoparticles Nanocomposites Alloy nanomaterials Inorganic pollutants Organic pollutants Heavy metal ion Dye 

References

  1. Adeleye AS et al (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662CrossRefGoogle Scholar
  2. Akhavan O (2011) Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 49(1):11–18CrossRefGoogle Scholar
  3. Alonso F, Beletskaya IP, Yus M (2002) Metal-mediated reductive hydrodehalogenation of organic halides. Chem Rev 102(11):4009–4091CrossRefGoogle Scholar
  4. Amir A, Lee W (2012) Enhanced reductive dechlorination of tetrachloroethene during reduction of cobalamin (III) by nano-mackinawite. J Hazard Mater 235–236:359–366CrossRefGoogle Scholar
  5. Baker JR (2001) Nanomaterial antimicrobial agents. Abstr Pap Am Chem Soc 221:616–617Google Scholar
  6. Barnes RJ et al (2010) Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere 80(5):554–562CrossRefGoogle Scholar
  7. Bezbaruah AN et al (2009) Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J Hazard Mater 166(2–3):1339–1343CrossRefGoogle Scholar
  8. Bezbaruah AN et al (2011) Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation. J Nanopart Res 13(12):6673–6681CrossRefGoogle Scholar
  9. Bezbaruah AN et al (2013) Ca-alginate-entrapped nanoscale iron: arsenic treatability and mechanism studies. J Nanopart Res 16(1):2175Google Scholar
  10. Bhaumik M et al (2014) Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: high performance for water treatment applications. J Colloid Interface Sci 425:75–82CrossRefGoogle Scholar
  11. Bhaumik M et al (2015a) Polyaniline/Fe-0 composite nanofibers: an excellent adsorbent for the removal of arsenic from aqueous solutions. Chem Eng J 271:135–146CrossRefGoogle Scholar
  12. Bhaumik M, McCrindle RI, Maity A (2015b) Enhanced adsorptive degradation of Congo red in aqueous solutions using polyaniline/Fe0 composite nanofibers. Chem Eng J 260:716–729CrossRefGoogle Scholar
  13. Bi Y, Hayes KF (2014) Nano-FeS inhibits UO2 reoxidation under varied oxic conditions. Environ Sci Technol 48(1):632–640CrossRefGoogle Scholar
  14. Bi Y et al (2013) Oxidative dissolution of UO2 in a simulated groundwater containing synthetic nanocrystalline mackinawite. Geochim Cosmochim Acta 102:175–190CrossRefGoogle Scholar
  15. Blowes DW, Ptacek CJ, Jambor JL (1997) In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies. Environ Sci Technol 31(12):3348–3357CrossRefGoogle Scholar
  16. Bogardi JJ et al (2012) Water security for a planet under pressure: interconnected challenges of a changing world call for sustainable solutions. Curr Opin Environ Sustain 4(1):35–43CrossRefGoogle Scholar
  17. Bogdanovic U et al (2015) Nanomaterial with high antimicrobial efficacy-copper/polyaniline nanocomposite. ACS Appl Mater Interfaces 7(3):1955–1966CrossRefGoogle Scholar
  18. Bokare AD et al (2008) Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl Catal B Environ 79(3):270–278CrossRefGoogle Scholar
  19. Botes M, Cloete TE (2010) The potential of nanofibers and nanobiocides in water purification. Crit Rev Microbiol 36(1):68–81CrossRefGoogle Scholar
  20. Brady-Estevez AS, Seoktae K, Elimelech M (2008) A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4(4):481–484CrossRefGoogle Scholar
  21. Brady-Estévez AS et al (2010) Impact of solution chemistry on viral removal by a single-walled carbon nanotube filter. Water Res 44(13):3773–3780CrossRefGoogle Scholar
  22. Cao JS et al (1999) Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere 38(3):565–571CrossRefGoogle Scholar
  23. Carpenter AW, de Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49(9):5277–5287CrossRefGoogle Scholar
  24. Casey FXM, Ong SK, Horton R (2000) Degradation and transformation of trichloroethylene in miscible displacement experiments through zerovalent metals. Environ Sci Technol 34(23):5023–5029CrossRefGoogle Scholar
  25. Chang RM, Kauffman RJ, Kwon Y (2014) Understanding the paradigm shift to computational social science in the presence of big data. Decis Support Syst 63:67–80CrossRefGoogle Scholar
  26. Chen W, Duan L, Zhu D (2007) Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ Sci Technol 41(24):8295–8300CrossRefGoogle Scholar
  27. Chen W et al (2008a) Adsorption of hydroxyl- and amino-substituted aromatics to carbon manotubes. Environ Sci Technol 42(18):6862–6868CrossRefGoogle Scholar
  28. Chen J, Chen W, Zhu D (2008b) Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: effects of aqueous solution chemistry. Environ Sci Technol 42(19):7225–7230CrossRefGoogle Scholar
  29. Chen SY, Chen WH, Shih CJ (2008c) Heavy metal removal from wastewater using zero-valent iron nanoparticles. Water Sci Technol 58(10):1947–1954CrossRefGoogle Scholar
  30. Chen CL, Wang XK, Nagatsu M (2009) Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environ Sci Technol 43(7):2362–2367CrossRefGoogle Scholar
  31. Chen SS et al (2014a) Dechlorination of tetrachloroethylene in water using stabilized nanoscale iron and palladized iron particles. Desalination Water Treat 52(4–6):702–711CrossRefGoogle Scholar
  32. Chen WF et al (2014b) Dechlorination of hexachlorobenzene by nano zero-valent iron/activated carbon composite: iron loading, kinetics and pathway. RSC Adv 4(87):46689–46696CrossRefGoogle Scholar
  33. Chen Q, Xin Y, Zhu X (2015) Au-Pd nanoparticles-decorated TiO2 nanobelts for photocatalytic degradation of antibiotic levofloxacin in aqueous solution. Electrochim Acta 186:34–42CrossRefGoogle Scholar
  34. Cheng R, Wang JL, Zhang WX (2007) Comparison of reductive dechlorination of p-chlorophenol using Fe-0 and nanosized Fe-0. J Hazard Mater 144(1–2):334–339CrossRefGoogle Scholar
  35. Cheng R et al (2010) Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano-Ni and its size effect. J Hazard Mater 180(1–3):79–85CrossRefGoogle Scholar
  36. Choe S et al (2001) Rapid reductive destruction of hazardous organic compounds by nanoscale Fe-0. Chemosphere 42(4):367–372CrossRefGoogle Scholar
  37. Chong MN et al (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027CrossRefGoogle Scholar
  38. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125CrossRefGoogle Scholar
  39. Crane RA et al (2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 45(9):2931–2942CrossRefGoogle Scholar
  40. Cui XJ et al (2010) Molecular characteristics and functional analysis of full-length hepatitis B virus quasispecies from a patient with chronic hepatitis B virus infection. Virus Res 150(1–2):43–48CrossRefGoogle Scholar
  41. Cui H et al (2012) Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J Ind Eng Chem 18:1418–1427Google Scholar
  42. Cui H et al (2013) Exceptional arsenic (III, V) removal performance of highly porous, nanostructured ZrO2 spheres for fixed bed reactors and the full-scale system modeling. Water Res 47(16):6258–6268CrossRefGoogle Scholar
  43. Daer S et al (2015) Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination 367:37–48CrossRefGoogle Scholar
  44. Deng BL, Burris DR, Campbell TJ (1999) Reduction of vinyl chloride in metallic iron-water systems. Environ Sci Technol 33(15):2651–2656CrossRefGoogle Scholar
  45. Deng N et al (2000) Discoloration of aqueous reactive dye solutions in the UV/Fe-0 system. Water Res 34(8):2408–2411CrossRefGoogle Scholar
  46. Deng L et al (2016) SnS2/TiO2 nanocomposites with enhanced visible light-driven photoreduction of aqueous Cr(VI). Ceram Int 42(3):3808–3815CrossRefGoogle Scholar
  47. Di Palma L, Gueye MT, Petrucci E (2015) Hexavalent chromium reduction in contaminated soil: a comparison between ferrous sulphate and nanoscale zero-valent iron. J Hazard Mater 281:70–76CrossRefGoogle Scholar
  48. Dickinson M, Scott TB (2010) The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J Hazard Mater 178(1–3):171–179CrossRefGoogle Scholar
  49. Dries J et al (2005) Combined removal of chlorinated ethenes and heavy metals by zerovalent iron in batch and continuous flow column systems. Environ Sci Technol 39(21):8460–8465CrossRefGoogle Scholar
  50. Dursun AY, Kalayci CS (2005) Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto chitin. J Hazard Mater 123(1–3):151–157CrossRefGoogle Scholar
  51. Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Abstr Pap Am Chem Soc 35(24):4922–4926Google Scholar
  52. Engates KE, Shipley HJ (2011) Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ Sci Pollut Res 18(3):386–395CrossRefGoogle Scholar
  53. Fagan SB et al (2004) 1,2-dichlorobenzene interacting with carbon nanotubes. Nano Lett 4(7):1285–1288CrossRefGoogle Scholar
  54. Fan J et al (2009) Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J Hazard Mater 166(2–3):904–910CrossRefGoogle Scholar
  55. Fan FL et al (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46CrossRefGoogle Scholar
  56. Fang ZQ et al (2011a) Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 268(1–3):60–67CrossRefGoogle Scholar
  57. Fang ZQ et al (2011b) Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor. Desalination 267(1):34–41CrossRefGoogle Scholar
  58. Farghali AA et al (2013) Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures. Beni-Suef Univ J Basic Appl Sci 2(2):61–71CrossRefGoogle Scholar
  59. Feng Q et al (2012) Adsorption and desorption characteristics of arsenic onto ceria nanoparticles. Nanoscale Res Lett 7(84):1–8Google Scholar
  60. Forouzani M et al (2015) Comparative study of oxidation of benzyl alcohol: influence of Cu-doped metal cation on nano ZnO catalytic activity. Chem Eng J 275:220–226CrossRefGoogle Scholar
  61. Fu FL, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418CrossRefGoogle Scholar
  62. Fu FL, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205CrossRefGoogle Scholar
  63. Ghasemi Z et al (2012) Thermodynamic and kinetic studies for the adsorption of Hg(II) by nano-TiO2 from aqueous solution. Adv Powder Technol 23(2):148–156CrossRefGoogle Scholar
  64. Ghosh MK et al (2012) Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method. Korean J Chem Eng 29(1):95–102CrossRefGoogle Scholar
  65. Gillham RW, Ohannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32(6):958–967CrossRefGoogle Scholar
  66. Gong Y et al (2012) Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles. Nanotechnology 23(29)Google Scholar
  67. Gong Y, Tang J, Zhao D (2016) Application of iron sulfide particles for groundwater and soil remediation: a review. Water Res 89:309–320CrossRefGoogle Scholar
  68. Gotovac S et al (2007) Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters. J Colloid Interface Sci 314(1):18–24CrossRefGoogle Scholar
  69. Grey D et al (2002) Water security in one blue planet: twenty-first century policy challenges for science. Philos Trans R Soc A Math Phys Eng Sci 2013:371Google Scholar
  70. Guasp E, Wei R (2003) Dehalogenation of trihalomethanes in drinking water on Pd-Fe bimetallic surface. J Chem Technol Biotechnol 78(6):654–658CrossRefGoogle Scholar
  71. Hao YM, Man C, Hu ZB (2010) Effective removal of Cu(II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J Hazard Mater 184(1–3):392–399CrossRefGoogle Scholar
  72. Hartono T et al (2009) Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution. J Colloid Interface Sci 333(1):114–119CrossRefGoogle Scholar
  73. He Y et al (2012) The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by zero-valent iron. Chem Eng J 179:8–18CrossRefGoogle Scholar
  74. He J et al (2014) Heterogeneous Fenton oxidation of catechol and 4-chlorocatechol catalyzed by nano-Fe3O4: role of the interface. Chem Eng J 258:433–441CrossRefGoogle Scholar
  75. Hoch LB et al (2008) Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ Sci Technol 42(7):2600–2605CrossRefGoogle Scholar
  76. Horzum N et al (2013) Chitosan fiber-supported zero-valent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic. RSC Adv 3(21):7828–7837CrossRefGoogle Scholar
  77. Hossain F et al (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 466:1047–1059CrossRefGoogle Scholar
  78. Hou MF et al (2007) The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron. J Hazard Mater 145(1–2):305–314CrossRefGoogle Scholar
  79. Hou B et al (2015) Heterogeneous electro-Fenton oxidation of catechol catalyzed by nano-Fe3O4: kinetics with the Fermi’s equation. J Taiwan Inst Chem Eng 3(4):1–11Google Scholar
  80. Hua M et al (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331CrossRefGoogle Scholar
  81. Huang C et al (2007) Characteristic of an innovative TiO2/Fe0 composite for treatment of azo dye. Sep Purif Technol 58(1):152–158CrossRefGoogle Scholar
  82. Huang L et al (2009) Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion. Solid State Sci 11(1):129–138CrossRefGoogle Scholar
  83. Huang Z et al (2011) Adsorption of Lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27(12):7558–7562CrossRefGoogle Scholar
  84. Huang Q et al (2013) Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts. J Hazard Mater 262:634–641CrossRefGoogle Scholar
  85. Hyun SP et al (2012) Uranium(VI) reduction by iron(II) monosulfide mackinawite. Environ Sci Technol 46(6):3369–3376CrossRefGoogle Scholar
  86. Jang SM et al (2004) Adsorption of 4-biphenylmethanethiolate on different-sized gold nanoparticle surfaces. Langmuir 20(5):1922–1927CrossRefGoogle Scholar
  87. Ji L et al (2009a) Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir 25(19):11608–11613CrossRefGoogle Scholar
  88. Ji L et al (2009b) Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol 43(7):2322–2327CrossRefGoogle Scholar
  89. Jo WK, Tayade RJ (2016) Facile photocatalytic reactor development using nano-TiO2 immobilized mosquito net and energy efficient UVLED for industrial dyes effluent treatment. J Environ Chem Eng 4(1):319–327CrossRefGoogle Scholar
  90. Joo SH et al (2005) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ Sci Technol 39(5):1263–1268CrossRefGoogle Scholar
  91. Kalia S et al (2014) Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci 292(9):2025–2052CrossRefGoogle Scholar
  92. Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050CrossRefGoogle Scholar
  93. Kar S et al (2016) Classification of river water pollution using Hyperion data. J Hydrol 537:221–233CrossRefGoogle Scholar
  94. Kim E et al (2011) Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications. ACS Appl Mater Interfaces 3(5):1457–1462CrossRefGoogle Scholar
  95. Kim EJ et al (2013) Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl Mater Interfaces 5(19):9628–9634CrossRefGoogle Scholar
  96. Klimkova S et al (2008) Application of nanoscale zero-valent iron for groundwater remediation: laboratory and pilot experiments. NANO 3(4):287–289CrossRefGoogle Scholar
  97. Klimkova S et al (2011) Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere 82(8):1178–1184CrossRefGoogle Scholar
  98. Kocabas-Atakli ZO, Yurum Y (2013) Synthesis and characterization of anatase nanoadsorbent and application in removal of lead, copper and arsenic from water. Chem Eng J 225:625–635CrossRefGoogle Scholar
  99. Koutahzadeh N, Esfahani MR, Arce PE (2016) Removal of acid black 1 from water by the pulsed corona discharge advanced oxidation method. J Water Process Eng 10:1–8CrossRefGoogle Scholar
  100. Kritis AA et al (2016) Latest aspects of aldosterone actions on the heart muscle. J Physiol Pharmacol 67(1):21–30Google Scholar
  101. Kuriakose S, Satpati B, Mohapatra S (2014) Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. Phys Chem Chem Phys 16(25):12741–12749CrossRefGoogle Scholar
  102. Kurian M, Nair DS (2014) Heterogeneous Fenton behavior of nano nickel zinc ferrite catalysts in the degradation of 4-chlorophenol from water under neutral conditions. J Water Process Eng 8:37–49CrossRefGoogle Scholar
  103. Lee CC, Doong RA (2014) Enhanced dechlorination of tetrachloroethylene by polyethylene glycol-coated zerovalent silicon in the presence of nickel ions. Appl Catal B Environ 144:182–188CrossRefGoogle Scholar
  104. Lee J, Kao H, Yang S (2014) Service innovation and smart analytics for industry 4.0 and big data environment. Procedia CIRP 16:3–8Google Scholar
  105. Li YH et al (2001) Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem Phys Lett 350(5–6):412–416CrossRefGoogle Scholar
  106. Li YH et al (2003a) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792CrossRefGoogle Scholar
  107. Li YH et al (2003b) Adsorption of fluoride from water by aligned carbon nanotubes. Mater Res Bull 38(3):469–476CrossRefGoogle Scholar
  108. Li Q et al (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602CrossRefGoogle Scholar
  109. Li J et al (2011a) Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes. Chem Eng J 166(2):551–558CrossRefGoogle Scholar
  110. Li YH et al (2011b) Adsorption of cationic red X-GRL from aqueous solutions by graphene: equilibrium, kinetics and thermodynamics study. Chem Biochem Eng Q 25(4):483–491Google Scholar
  111. Li YC, Li TL, Jin ZH (2011c) Stabilization of Fe-0 nanoparticles with silica fume for enhanced transport and remediation of hexavalent chromium in water and soil. J Environ Sci 23(7):1211–1218CrossRefGoogle Scholar
  112. Li Y et al (2012a) Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater Res Bull 47(8):1898–1904CrossRefGoogle Scholar
  113. Li Z et al (2012b) Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem Eng J 210:539–546CrossRefGoogle Scholar
  114. Li X et al (2012c) Pore size and surface area control of MgO nanostructures using a surfactant-templated hydrothermal process: high adsorption capability to azo dyes. Colloids Surf A Physicochem Eng Aspects 408:79–86CrossRefGoogle Scholar
  115. Li S et al (2014a) Effective photocatalytic decolorization of methylene blue utilizing ZnO/rectorite nanocomposite under simulated solar irradiation. J Alloy Compd 616(31):227–234CrossRefGoogle Scholar
  116. Li W, Wang Y, Irini A (2014b) Effect of pH and H2O2 dosage on catechol oxidation in nano-Fe3O4 catalyzing UV—Fenton and identification of reactive oxygen species. Chem Eng J 244:1–8CrossRefGoogle Scholar
  117. Li SL et al (2014c) Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: a pilot-scale demonstration. Chem Eng J 254:115–123CrossRefGoogle Scholar
  118. Li SL et al (2014d) Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration. Environ Sci Process Impacts 16(3):524–533CrossRefGoogle Scholar
  119. Li X et al (2015) The synthesis of CdS/TiO2 hetero-nanofibers with enhanced visible photocatalytic activity. J Colloid Interface Sci 452:89–97CrossRefGoogle Scholar
  120. Liang P, Shi TQ, Li J (2004) Nanometer-size titanium dioxide separation/preconcentration and FAAS determination of trace Zn and Cd in water sample. Int J Environ Anal Chem 84(4):315–321CrossRefGoogle Scholar
  121. Liang L, Luo L, Zhang S (2011) Adsorption and desorption of humic and fulvic acids on SiO2 particles at nano- and micro-scales. Colloids Surf A Physicochem Eng Aspects 384(1–3):126–130CrossRefGoogle Scholar
  122. Lien HL, Zhang WX (1999) Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng ASCE 125(11):1042–1047CrossRefGoogle Scholar
  123. Lien HL, Zhang WX (2005) Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. J Environ Eng ASCE 131(1):4–10CrossRefGoogle Scholar
  124. Lien HL, Zhang WX (2007) Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Appl Catal B Environ 77(1–2):110–116CrossRefGoogle Scholar
  125. Lim TT, Feng J, Zhu BW (2007) Kinetic and mechanistic examinations of reductive transformation pathways of brominated methanes with nano-scale Fe and Ni/Fe particles. Water Res 41(4):875–883CrossRefGoogle Scholar
  126. Lin D, Xing B (2008) Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environ Sci Technol 42(19):7254–7259CrossRefGoogle Scholar
  127. Lin YT, Weng CH, Chen FY (2008) Effective removal of AB24 dye by nano/micro-size zero-valent iron. Sep Purif Technol 64(1):26–30CrossRefGoogle Scholar
  128. Liu YQ, Lowry GV (2006) Effect of particle age (Fe-o content) and solution pH on NZVI reactivity: H-2 evolution and TCE dechlorination. Environ Sci Technol 40(19):6085–6090CrossRefGoogle Scholar
  129. Liu YQ et al (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39(5):1338–1345CrossRefGoogle Scholar
  130. Liu TY et al (2010a) Effects of physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and alpha-Fe2O3 nanoparticles. Water Sci Technol 61(11):2759–2767CrossRefGoogle Scholar
  131. Liu TY et al (2010b) Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater. J Hazard Mater 184(1–3):724–730CrossRefGoogle Scholar
  132. Liu F et al (2012a) Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl Mater Interfaces 4(2):922–927CrossRefGoogle Scholar
  133. Liu T et al (2012b) Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf B Biointerfaces 90:197–203CrossRefGoogle Scholar
  134. Liu L et al (2013) Adsorption of Au(III), Pd(II), and Pt(IV) from aqueous solution onto graphene oxide. J Chem Eng Data 58(2):209–216CrossRefGoogle Scholar
  135. Liu FL et al (2014) Graphene-supported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study. J Environ Sci 26(8):1751–1762CrossRefGoogle Scholar
  136. Liu Y et al (2015) Degradation of the common aqueous antibiotic tetracycline using a carbon nanotube electrochemical filter. Environ Sci Technol 49(13):7974–7980CrossRefGoogle Scholar
  137. Liu Y et al (2016) Optimized synthesis of FeS nanoparticles with a high Cr(VI) removal capability. J NanomaterGoogle Scholar
  138. Long T, Ramsburg CA (2011) Encapsulation of nZVI particles using a gum Arabic stabilized oil-in-water emulsion. J Hazard Mater 189(3):801–808CrossRefGoogle Scholar
  139. Losurdo M et al (2009) Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives. J Nanopart Res 11(7):1521–1554CrossRefGoogle Scholar
  140. Lowry GV, Johnson KM (2004) Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ Sci Technol 38(19):5208–5216CrossRefGoogle Scholar
  141. Lu CY, Chiu HS (2006) Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 61(4):1138–1145CrossRefGoogle Scholar
  142. Lu C, Liu C (2006) Removal of nickel(II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81(12):1932–1940CrossRefGoogle Scholar
  143. Lu C, Chung Y, Chang K (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39(6):1183–1189CrossRefGoogle Scholar
  144. Lv X et al (2012) Highly active nanoscale zero-valent iron (nZVI)-Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions. J Colloid Interface Sci 369(1):460–469CrossRefGoogle Scholar
  145. Ma X et al (2010) A novel strategy to prepare ZnO/PbS heterostructured functional nanocomposite utilizing the surface adsorption property of ZnO nanosheets. Catal Today 158(3–4):459–463CrossRefGoogle Scholar
  146. Ma J et al (2014) Fabrication of Ag/TiO2 nanotube array with enhanced photo-catalytic degradation of aqueous organic pollutant. Physica E Low-Dimens Syst Nanostruct 58:24–29CrossRefGoogle Scholar
  147. Ma BW et al (2015) Modification of ultrafiltration membrane with nanoscale zerovalent iron layers for humic acid fouling reduction. Water Res 71:140–149CrossRefGoogle Scholar
  148. Machado FM et al (2011) Adsorption of reactive red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192(3):1122–1131CrossRefGoogle Scholar
  149. Mahmoodi NM, Arami M (2009) Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. J Photochem Photobiol B 94(1):20–24CrossRefGoogle Scholar
  150. Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28(12):2045–2053CrossRefGoogle Scholar
  151. Mikelsaar AV et al (2012) Epitope of titin A-band-specific monoclonal antibody Tit1 5 H1.1 is highly conserved in several Fn3 domains of the titin molecule. Centriole staining in human, mouse and zebrafish cells. Cell Div 7(1):1–10CrossRefGoogle Scholar
  152. Mohammadi R, Kassaee MZ (2013) Sulfochitosan encapsulated nano-Fe3O4 as an efficient and reusable magnetic catalyst for green synthesis of 2-amino-4H-chromen-4-yl phosphonates. J Mol Catal A Chem 380:152–158CrossRefGoogle Scholar
  153. Mueller NC, Nowack B (2010) Nanoparticles for remediation: solving big problems with little particles. Elements 6(6):395–400CrossRefGoogle Scholar
  154. Mueller NC et al (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558CrossRefGoogle Scholar
  155. Nagpal V et al (2010) Reductive dechlorination of gamma-hexachlorocyclohexane using Fe-Pd bimetallic nanoparticles. J Hazard Mater 175(1–3):680–687CrossRefGoogle Scholar
  156. Najafi M, Yousefi Y, Rafati AA (2012) Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Sep Purif Technol 85:193–205CrossRefGoogle Scholar
  157. Nam S, Tratnyek PG (2000) Reduction of azo dyes with zero-valent iron. Water Res 34(6):1837–1845CrossRefGoogle Scholar
  158. Nemecek J et al (2015) Combined abiotic and biotic in-situ reduction of hexavalent chromium in groundwater using nZVI and whey: a remedial pilot test. J Hazard Mater 300:670–679CrossRefGoogle Scholar
  159. Oleszczuk P, Pan B, Xing B (2009) Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes. Environ Sci Technol 43(24):9167–9173CrossRefGoogle Scholar
  160. Ong CS et al (2016) Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: a review. DesalinationGoogle Scholar
  161. Oskoei V et al (2015) Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption. J Mol Liq 213:374–380CrossRefGoogle Scholar
  162. Ozay O et al (2009) Removal of toxic metal ions with magnetic hydrogels. Water Res 43(17):4403–4411CrossRefGoogle Scholar
  163. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42(24):9005–9013CrossRefGoogle Scholar
  164. Pan JR et al (2012) Reductive catalysis of novel TiO2/Fe0 composite under UV irradiation for nitrate removal from aqueous solution. Sep Purif Technol 84:52–55CrossRefGoogle Scholar
  165. Pariti A et al (2014) Superparamagnetic Au-Fe3O4 nanoparticles: one-pot synthesis, biofunctionalization and toxicity evaluation. Mater Res Express 1(3)Google Scholar
  166. Park CM et al (2016) Environmental behavior of engineered nanomaterials in porous media: a review. J Hazard Mater 309:133–150CrossRefGoogle Scholar
  167. Parshetti GK, Doong RA (2009) Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes. Water Res 43(12):3086–3094CrossRefGoogle Scholar
  168. Patterson RR, Fendorf S, Fendorf M (1997) Reduction of hexavalent chromium by amorphous iron sulfide. Environ Sci Technol 31(7):2039–2044CrossRefGoogle Scholar
  169. Peng XJ et al (2005) Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater Lett 59(4):399–403CrossRefGoogle Scholar
  170. Perey JR et al (2002) Zero-valent iron pretreatment for enhancing the biodegradability of azo dyes. Water Environ Res 74(3):221–225CrossRefGoogle Scholar
  171. Peterson JW et al (2010) Experimental determination of ampicillin adsorption to nanometer-size Al2O3 in water. Chemosphere 80(11):1268–1273CrossRefGoogle Scholar
  172. Ponder SM et al (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13(2):479–486CrossRefGoogle Scholar
  173. Prasse C, Ternes T (2010) Removal of organic and inorganic pollutants and pathogens from wastewater and drinking water using nanoparticles—a review, pp 55–79Google Scholar
  174. Qu X et al (2013a) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46(3):834–843CrossRefGoogle Scholar
  175. Qu X, Alvarez PJ, Li Q (2013b) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946CrossRefGoogle Scholar
  176. Raizada P et al (2014) Solar photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles: role of adsorption in dye degradation. Appl Catal A 486(1–2):159–169CrossRefGoogle Scholar
  177. Ravi S, Vadukumpully S (2016) Sustainable carbon nanomaterials: recent advances and its applications in energy and environmental remediation. J Environ Chem Eng 4(1):835–856CrossRefGoogle Scholar
  178. Ravikumar KVG et al (2016) A comparative study with biologically and chemically synthesized nZVI: applications in Cr(VI) removal and ecotoxicity assessment using indigenous microorganisms from chromium-contaminated site. Environ Sci Pollut Res 23(3):2613–2627CrossRefGoogle Scholar
  179. Reinsch BC et al (2010) Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ Sci Technol 44(9):3455–3461CrossRefGoogle Scholar
  180. Revitt DM, Ellis JB (2016) Urban surface water pollution problems arising from misconnections. Sci Total Environ 551–552:163–174CrossRefGoogle Scholar
  181. Riba O et al (2008) Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochim Cosmochim Acta 72(16):4047–4057CrossRefGoogle Scholar
  182. Saikia J, Saha B, Das G (2011) Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles. J Hazard Mater 186(1):575–582CrossRefGoogle Scholar
  183. Samadi M et al (2016) Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605:2–19CrossRefGoogle Scholar
  184. Scheinost AC, Charlet L (2008) Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products. Environ Sci Technol 42(6):1984–1989CrossRefGoogle Scholar
  185. Scheinost AC et al (2008) X-ray absorption and photoelectron spectroscopy investigation of selenite reduction by FeII-bearing minerals. J Contam Hydrol 102(3–4):228–245CrossRefGoogle Scholar
  186. Schrick B et al (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14(12):5140–5147CrossRefGoogle Scholar
  187. Scott TB et al (2011) Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. J Hazard Mater 186(1):280–287CrossRefGoogle Scholar
  188. Shan C, Tong M (2013) Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide. Water Res 47(10):3411–3421CrossRefGoogle Scholar
  189. Sheela T, Nayaka YA (2012) Kinetics and thermodynamics of cadmium and lead ions adsorption on NiO nanoparticles. Chem Eng J 191:123–131CrossRefGoogle Scholar
  190. Sheela T et al (2012) Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles. Powder Technol 217:163–170CrossRefGoogle Scholar
  191. Shen YF et al (2009) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol 68(3):312–319CrossRefGoogle Scholar
  192. Sheydaei M, Aber S, Khataee A (2014) Preparation of a novel γ-FeOOH-GAC nano composite for decolorization of textile wastewater by photo Fenton-like process in a continuous reactor. J Mol Catal A Chem 392(11):229–234CrossRefGoogle Scholar
  193. Shih YH, Tai YT (2010) Reaction of decabrominated diphenyl ether by zerovalent iron nanoplarticles. Chemosphere 78(10):1200–1206CrossRefGoogle Scholar
  194. Shih YH, Hsu CY, Su YF (2011) Reduction of hexachlorobenzene by nanoscale zero-valent iron: kinetics, pH effect, and degradation mechanism. Sep Purif Technol 76(3):268–274CrossRefGoogle Scholar
  195. Shih YH et al (2016) Concurrent oxidation and reduction of pentachlorophenol by bimetallic zerovalent Pd/Fe nanoparticles in an oxic water. J Hazard Mater 301:416–423CrossRefGoogle Scholar
  196. Shokri A, Mahanpoor K, Soodbar D (2016) Evaluation of a modified TiO2 (GO–B–TiO2) photo catalyst for degradation of 4-nitrophenol in petrochemical wastewater by response surface methodology based on the central composite design. J Environ Chem Eng 4(1):585–598CrossRefGoogle Scholar
  197. Shu HY et al (2007) Reduction of an azo dye acid black 24 solution using synthesized nanoscale zerovalent iron particles. J Colloid Interface Sci 314(1):89–97CrossRefGoogle Scholar
  198. Sitko R et al (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42(16):5682–5689CrossRefGoogle Scholar
  199. Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91:122–143CrossRefGoogle Scholar
  200. Smuleac V et al (2011) Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J Membr Sci 379(1–2):131–137CrossRefGoogle Scholar
  201. Soltani RDC et al (2016) Ultrasonically induced ZnO—biosilica nanocomposite for degradation of a textile dye in aqueous phase. Ultrason Sonochem 28:69–78CrossRefGoogle Scholar
  202. Song H, Carraway ER (2005) Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Technol 39(16):6237–6245CrossRefGoogle Scholar
  203. Song H, Carraway ER (2008) Catalytic hydrodechlorination of chlorinated ethenes by nanoscale zero-valent iron. Appl Catal B Environ 78(1–2):53–60CrossRefGoogle Scholar
  204. Staniszewska M, Graca B, Nehring I (2015) The fate of bisphenol A, 4-tert-octylphenol and 4-nonylphenol leached from plastic debris into marine water—experimental studies on biodegradation and sorption on suspended particulate matter and nano-TiO2. Chemosphere 145:535–542CrossRefGoogle Scholar
  205. Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632CrossRefGoogle Scholar
  206. Strongin D (2004) Environmental applications: treatment/remediation using nanotechnology: an overview, vol 890, pp 202–204Google Scholar
  207. Su F, Lu C, Hu S (2010) Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloids Surf A Physicochem Eng Aspects 353(1):83–91CrossRefGoogle Scholar
  208. Su CM et al (2012) A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Res 46(16):5071–5084CrossRefGoogle Scholar
  209. Sui Z et al (2012) Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem 22(18):8767–8771CrossRefGoogle Scholar
  210. Sumesh E, Bootharaju MS, Pradeep AT (2011) A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. J Hazard Mater 189(1–2):450–457CrossRefGoogle Scholar
  211. Sun L, Yu H, Fugetsu B (2012) Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution. J Hazard Mater 203:101–110CrossRefGoogle Scholar
  212. Sun SB et al (2013) Synthesis of N-doped ZnO nanoparticles with improved photocatalytical activity. Ceram Int 39(5):5197–5203CrossRefGoogle Scholar
  213. Sun SP et al (2014) Enhanced heterogeneous and homogeneous Fenton-like degradation of carbamazepine by nano-Fe3O4/H2O2 with nitrilotriacetic acid. Chem Eng J 244:44–49CrossRefGoogle Scholar
  214. Taha MR, Ibrahim AH (2014) Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent. J Environ Chem Eng 2(1):1–8CrossRefGoogle Scholar
  215. Tang NJ et al (2006) Highly stable carbon-coated Fe/SiO2 composites: synthesis, structure and magnetic properties. Carbon 44(3):423–427CrossRefGoogle Scholar
  216. Tang W et al (2011) Arsenic(III, V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. J Hazard Mater 192(1):131–138Google Scholar
  217. Tataru G, Popa M, Desbrieres J (2011) Magnetic microparticles based on natural polymers. Int J Pharm 404(1–2):83–93CrossRefGoogle Scholar
  218. Tayade RJ et al (2007) Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci Technol Adv Mater 8(6):455–462CrossRefGoogle Scholar
  219. Tee YH, Grulke E, Bhattacharyya D (2005) Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Ind Eng Chem Res 44(18):7062–7070CrossRefGoogle Scholar
  220. Tee YH, Bachas L, Bhattacharyya D (2009) Degradation of trichloroethylene and dichlorobiphenyls by iron-based bimetallic nanoparticles. J Phys Chem C 113(22):9454–9464CrossRefGoogle Scholar
  221. Tesh SJ, Scott TB (2014) Nano-composites for water remediation: a review. Adv Mater 26(35):6056–6068CrossRefGoogle Scholar
  222. ThanhThuy TT, Feng H, Cai Q (2013) Photocatalytic degradation of pentachlorophenol on ZnSe/TiO2 supported by photo-Fenton system. Chem Eng J 223:379–387CrossRefGoogle Scholar
  223. Thinh NN et al (2013) Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution. Mater Sci Eng C Mater Biol Appl 33(3):1214–1218CrossRefGoogle Scholar
  224. Thompson JM, Chisholm BJ, Bezbaruah AN (2010) Reductive dechlorination of chloroacetanilide herbicide (alachlor) using zero-valent iron nanoparticles. Environ Eng Sci 27(3):227–232CrossRefGoogle Scholar
  225. Tofighy MA, Mohammadi T (2011) Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater 185(1):140–147CrossRefGoogle Scholar
  226. Tripathi G, Clements M (2003) Adsorption of 2-mercaptopyrimidine on silver nanoparticles in water. J Phys Chem B 107(40):11125–11132CrossRefGoogle Scholar
  227. Tuutij Rvi T et al (2009) As(V) adsorption on maghemite nanoparticles. J Hazard Mater 166(2–3):1415–1420CrossRefGoogle Scholar
  228. Vadahanambi S et al (2013) Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ Sci Technol 47(18):10510–10517Google Scholar
  229. Vivero-Escoto JL, Huang YT (2011) Inorganic-organic hybrid nanomaterials for therapeutic and diagnostic imaging applications. Int J Mol Sci 12(6):3888–3927CrossRefGoogle Scholar
  230. Wahab R et al (2014) Enhance antimicrobial activity of ZnO nanomaterial’s (QDs and NPs) and their analytical applications. Physica E Low-Dimens Syst Nanostruct 62:111–117CrossRefGoogle Scholar
  231. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156CrossRefGoogle Scholar
  232. Wang W et al (2006) Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal. Chemosphere 65(8):1396–1404CrossRefGoogle Scholar
  233. Wang H et al (2013) Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl Surf Sci 279:432–440CrossRefGoogle Scholar
  234. Wei JJ et al (2006) Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters. Water Res 40(2):348–354CrossRefGoogle Scholar
  235. Wu LF, Ritchie SMC (2008) Enhanced dechlorination of trichloroethylene by membrane-supported Pd-coated iron nanoparticles. Environ Prog 27(2):218–224CrossRefGoogle Scholar
  236. Wu ZS et al (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134(22):9082–9085CrossRefGoogle Scholar
  237. Wu R et al (2014) Hydrothermal preparation of magnetic Fe3O4@C nanoparticles for dye adsorption. J Environ Chem Eng 2(2):907–913CrossRefGoogle Scholar
  238. Xi YF, Mallavarapu M, Naidu R (2010) Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron-A SEM, TEM and XPS study. Mater Res Bull 45(10):1361–1367CrossRefGoogle Scholar
  239. Xu Y, Zhang WX (2000) Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Ind Eng Chem Res 39(7):2238–2244CrossRefGoogle Scholar
  240. Xu XH et al (2004) Catalytic dechlorination of 2,4-dichlorophenol in water by nanoscale Pd/Fe bimetallic system. Chin J Catal 25(2):138–142Google Scholar
  241. Xu XH et al (2009) Catalytic dechlorination of p-NCB in water by nanoscale Ni/Fe. Desalination 242(1–3):346–354CrossRefGoogle Scholar
  242. Xu J, Wang L, Zhu Y (2012a) Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 28(22):8418–8425CrossRefGoogle Scholar
  243. Xu FY et al (2012b) Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol. Environ Sci Technol 46(8):4576–4582CrossRefGoogle Scholar
  244. Yan WL et al (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Process Impacts 15(1):63–77CrossRefGoogle Scholar
  245. Yan JC et al (2015) Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Bioresour Technol 175:269–274CrossRefGoogle Scholar
  246. Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev 110(10):5989–6008CrossRefGoogle Scholar
  247. Yang S et al (2011) Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci 359(1):24–29CrossRefGoogle Scholar
  248. Yang XJ et al (2015) Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles. Trans Nonferrous Met Soc China 25(2):504–509CrossRefGoogle Scholar
  249. Yang X et al (2016) Effect of phosphate on heterogeneous Fenton oxidation of catechol by nano-Fe3O4: inhibitor or stabilizer? J Environ Sci 39(1):69–76CrossRefGoogle Scholar
  250. Yin Y, Talapin D (2013) The chemistry of functional nanomaterials. Chem Soc Rev 42(7):2484–2487CrossRefGoogle Scholar
  251. Yirsaw BD et al (2015) Environmental application and ecological significance of nano-zero valent iron. J Environ SciGoogle Scholar
  252. Yu C et al (2011) Fe3O4 nano-whiskers by ultrasonic-aided reduction in concentrated NaOH solution. Particuology 9(1):86–90CrossRefGoogle Scholar
  253. Yu J et al (2014) Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ 482:241–251CrossRefGoogle Scholar
  254. Yuan W, Bi S, Cao M (2015) Formaldehyde molecule adsorbed on graphene: a first-principles study. Mater Rev 29(18):156–159Google Scholar
  255. Zeng T et al (2010) Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem 12(12):570–573CrossRefGoogle Scholar
  256. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3–4):323–332CrossRefGoogle Scholar
  257. Zhang WX, Wang CB, Lien HL (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40(4):387–395CrossRefGoogle Scholar
  258. Zhang WH, Quan X, Zhang ZY (2007) Catalytic reductive dechlorination of p-chlorophenol in water using Ni/Fe nanoscale particles. J Environ Sci 19(3):362–366CrossRefGoogle Scholar
  259. Zhang L et al (2008) Studies on the capability and behavior of adsorption of thallium on nano-Al2O3. J Hazard Mater 157(2–3):352–357CrossRefGoogle Scholar
  260. Zhang L et al (2010a) Kinetic and thermodynamic studies of adsorption of gallium(III) on nano-TiO2. Rare Met 29(1):16–20CrossRefGoogle Scholar
  261. Zhang X et al (2010b) Degradation of 2,4,6-trinitrotoluene (TNT) from explosive wastewater using nanoscale zero-valent iron. Chem Eng J 158(3):566–570CrossRefGoogle Scholar
  262. Zhang D et al (2010c) Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale 2(6):917–919CrossRefGoogle Scholar
  263. Zhang C, Yao Y, Chen SH (2014) Size-dependent surface energy density of typically fcc metallic nanomaterials. Comput Mater Sci 82:372–377CrossRefGoogle Scholar
  264. Zhao C et al (2010) Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation. J Hazard Mater 176(1–3):884–892CrossRefGoogle Scholar
  265. Zhao G et al (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45(24):10454–10462CrossRefGoogle Scholar
  266. Zhao G et al (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41(20):6182–6188CrossRefGoogle Scholar
  267. Zhao C et al (2013) Role of pH on photolytic and photocatalytic degradation of antibiotic oxytetracycline in aqueous solution under visible/solar light: kinetics and mechanism studies. Appl Catal B Environ 134:83–92CrossRefGoogle Scholar
  268. Zhao C et al (2014) Advantages of TiO2/5A composite catalyst for photocatalytic degradation of antibiotic oxytetracycline in aqueous solution: comparison between TiO2 and TiO2/5A composite system. Chem Eng J 248:280–289CrossRefGoogle Scholar
  269. Zhou YM et al (2014) Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour Technol 152:538–542CrossRefGoogle Scholar
  270. Zhu HJ et al (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172(2–3):1591–1596CrossRefGoogle Scholar
  271. Zhu J et al (2012) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46(2):977–985CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chun Zhao
    • 1
    • 2
    • 5
    Email author
  • Yuanyuan Liu
    • 1
    • 2
  • Yongjun Sun
    • 3
  • Jiangya Ma
    • 4
  • Yunhua Zhu
    • 4
  • Zhihua Sun
    • 5
  • Zhaoyang Wang
    • 5
  • Lei Ding
    • 4
  • Guang Yang
    • 5
  • Junfeng Li
    • 5
  • Liqiang Zhou
    • 7
  • Jun Wang
    • 8
  • Guocheng Zhu
    • 6
  • Peng Zhang
    • 6
  • Huifang Wu
    • 3
  • Huaili Zheng
    • 1
    • 2
  1. 1.Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of EducationChongqing UniversityChongqingPeople’s Republic of China
  2. 2.National Centre for International Research of Low-Carbon and Green BuildingsChongqing UniversityChongqingPeople’s Republic of China
  3. 3.College of Urban ConstructionNanjing Tech UniversityNanjingPeople’s Republic of China
  4. 4.School of Civil Engineering and ArchitectureAnhui University of TechnologyMaanshanPeople’s Republic of China
  5. 5.College of Water and Architectural EngineeringShihezi UniversityShiheziPeople’s Republic of China
  6. 6.Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqingPeople’s Republic of China
  7. 7.Chongqing Solid Waste Management CenterChongqingPeople’s Republic of China
  8. 8.Chongqing Research Academy of Environmental SciencesChongqingPeople’s Republic of China

Personalised recommendations