Adsorption and Desorption Properties of Carbon Nanomaterials, the Potential for Water Treatments and Associated Risks

  • Marinella FarréEmail author
  • Josep Sanchís
  • Damià Barceló


The water technologies based on the physicochemical adsorption are methods extensively used because are fast, efficient, and cost effective. In this regard, the adsorption capabilities of carbonaceous materials have been widely exploited. From the activated carbon, fullerenes, carbon nanotubes (CNTs) to the latest graphene-based materials are highly efficient for contaminant removal from aqueous solution because of their large specific surface area, porosity, and reactivity, in particular, in the case of carbon nanomaterials (CNMs). In this chapter, the adsorption properties and mechanisms of CNMs are revised. The recent developments for contaminants removal from aqueous systems are provided, the most relevant works discussed, and the development tendency of adsorbents are analysed in detail. However the potential of CNMs as emerging environmental contaminants should be as well deemed. Therefore, the methods to minimize the impact of the use of these new materials in waters technology are account and, the studies on the environmental occurrence, fate and behaviour of CNMs as emerging contaminants will be presented. To conclude, the potential associated risks of CNMs as environmental contaminants is considered, with particular attention to their influence on the toxicity modulation of co-contaminants in the same compartments.


Adsorption Water treatments Carbon nanomaterials Fullerenes CNTs MWCNTs SWCNTs Graphene Toxicity Trojan-Horse effects 



This work has been funded by the Spanish Ministry of Science and Innovation through the projects Nano-Transfer (ERA-NET SIINN PCIN-2015-182-CO2-01) and Integra-Coast (CGL2014-56530-C4-1-R).


  1. Abraham JK et al (2004) A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Mater Struct 13(5):1045–1049CrossRefGoogle Scholar
  2. Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50(5):1853–1860CrossRefGoogle Scholar
  3. AlSaadi MA et al (2016) Removal of cadmium from water by CNT-PAC composite: effect of functionalization. Nano 11(1)Google Scholar
  4. Al-Saidi HM et al (2016) Multi-walled carbon nanotubes as an adsorbent material for the solid phase extraction of bismuth from aqueous media: kinetic and thermodynamic studies and analytical applications. J Mol Liq 216:693–698CrossRefGoogle Scholar
  5. Álvarez-Torrellas S et al (2016) Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem Eng J 283:936–947CrossRefGoogle Scholar
  6. Amiraslanzadeh S (2016) The effect of doping different heteroatoms on the interaction and adsorption abilities of fullerene. Heteroat Chem 27(1):23–31CrossRefGoogle Scholar
  7. Aroutiounian VM (2015) Gas sensors based on functionalized carbon nanotubes. Front Struct Civil Eng 9(4):333–354Google Scholar
  8. Arvidsson R, Molander S, Sandén BA (2013) Review of potential environmental and health risks of the nanomaterial graphene. Hum Ecol Risk Assess Int J 19(4):873–887Google Scholar
  9. Astefanei A, Núñez O, Galceran MT (2015) Characterisation and determination of fullerenes: a critical review. Anal Chim Acta 882:1–21CrossRefGoogle Scholar
  10. Azevedo Costa CL et al (2012) In vitro evaluation of co-exposure of arsenium and an organic nanomaterial (fullerene, C 60) in zebrafish hepatocytes. Comp Biochem Physiol C Toxicol Pharmacol 155(2):206–212Google Scholar
  11. Azimi S et al (2014) Synthesis, characterization and antibacterial activity of chlorophyllin functionalized graphene oxide nanostructures. Sci Adv Mat 6(4):771–781CrossRefGoogle Scholar
  12. Badhulika S, Myung NV, Mulchandani A (2014) Conducting polymer coated single-walled carbon nanotube gas sensors for the detection of volatile organic compounds. Talanta 123:109–114CrossRefGoogle Scholar
  13. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1(2):180–192CrossRefGoogle Scholar
  14. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792CrossRefGoogle Scholar
  15. Baun A et al (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86(3):379–387CrossRefGoogle Scholar
  16. Becker L et al (1994) Fullerenes in the 1.85-billion-year-old Sudbury impact structure. Science 265(5172):642–645CrossRefGoogle Scholar
  17. Bellucci S (2009) Nanoparticles and nanodevices in biological applicationsGoogle Scholar
  18. Bénard P, Chahine R (2007) Storage of hydrogen by physisorption on carbon and nanostructured materials. Scripta Mater 56(10):803–808CrossRefGoogle Scholar
  19. Brant J, Lecoanet H, Wiesner M (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7(4–5):545–553CrossRefGoogle Scholar
  20. Brant JA et al (2007) Fullerol cluster formation in aqueous solutions: implications for environmental release. J Colloid Interface Sci 314(1):281–288CrossRefGoogle Scholar
  21. Buseck PR (2002) Geological fullerenes: review and analysis. Earth Planet Sci Lett 203(3–4):781–792CrossRefGoogle Scholar
  22. Buseck PR, Adachi K (2008) Nanoparticles in the atmosphere. Elements 4(6):389–394CrossRefGoogle Scholar
  23. Cabria I, López MJ, Alonso JA (2005) Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping. J Chem Phys 123(20)Google Scholar
  24. Carboni A et al (2014) An analytical method for determination of fullerenes and functionalized fullerenes in soils with high performance liquid chromatography and UV detection. Anal Chim Acta 807:159–165CrossRefGoogle Scholar
  25. Carboni A et al (2016) A method for the determination of fullerenes in soil and sediment matrices using ultra-high performance liquid chromatography coupled with heated electrospray quadrupole time of flight mass spectrometry. J Chromatogr A 1433:123–130CrossRefGoogle Scholar
  26. Chandrakumar KRS, Ghosh SK (2008) Alkali-metal-induced enhancement of hydrogen adsorption in C60 fullerene: an ab initio study. Nano Lett 8(1):13–19CrossRefGoogle Scholar
  27. Chang X, Bouchard DC (2013) Multiwalled carbon nanotube deposition on model environmental surfaces. Environ Sci Technol 47(18):10372–10380Google Scholar
  28. Chang YN et al (2016) Antimicrobial behavior comparison and antimicrobial mechanism of silver coated carbon nanocomposites. Process Saf Environ Prot 102:596–605CrossRefGoogle Scholar
  29. Chao YC, Shih JS (1998) Adsorption study of organic molecules on fullerene with piezoelectric crystal detection system. Anal Chim Acta 374(1):39–46CrossRefGoogle Scholar
  30. Chao Y et al (2014) Development of novel graphene-like layered hexagonal boron nitride for adsorptive removal of antibiotic gatifloxacin from aqueous solution. Green Chem Lett Rev 7(4):330–336CrossRefGoogle Scholar
  31. Chawla J, Kumar R, Kaur I (2015) Carbon nanotubes and graphenes as adsorbents for adsorption of lead ions from water: a review. J Water Supply Res Technol AQUA 64(6):641–659CrossRefGoogle Scholar
  32. Chen P et al (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285(5424):91–93CrossRefGoogle Scholar
  33. Chen Z, Westerhoff P, Herckes P (2008) Quantification of C60 fullerene concentrations in water. Environ Toxicol Chem 27(9):1852–1859CrossRefGoogle Scholar
  34. Chen S, Liu D, Wang H (2015a) Preparation of modified multiwalled carbon nanotubes/chitosan composites and their antifouling properties. Huagong Xuebao/CIESC J 66(11):4689–4695Google Scholar
  35. Chen JH et al (2015b) Highly effective removal of Cu(II) by triethylenetetramine-magnetic reduced graphene oxide composite. Appl Surf Sci 356:355–363CrossRefGoogle Scholar
  36. Chen L et al (2016) One-step fabrication of amino functionalized magnetic graphene oxide composite for Uranium(VI) removal. J Colloid Interface Sci 472:99–107CrossRefGoogle Scholar
  37. Chibante LPF, Heymann D (1993) On the geochemistry of fullerenes: stability of C60 in ambient air and the role of ozone. Geochim Cosmochim Acta 57(8):1879–1881CrossRefGoogle Scholar
  38. Chung H et al (2011) The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf 74(4):569–575CrossRefGoogle Scholar
  39. Commission E (2013) Commission Delegated Regulation (EU) No 1363/2013Google Scholar
  40. Czech B, Oleszczuk P (2016) Sorption of diclofenac and naproxen onto MWCNT in model wastewater treated by H2O2 and/or UV. Chemosphere 149:272–278CrossRefGoogle Scholar
  41. Dai H et al (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260(3–4):471–475CrossRefGoogle Scholar
  42. Davydov VY et al (2000) Thermodynamic characteristics of adsorption of organic compounds on molecular crystals of C60 fullerene. Zh Fiz Khim 74(4):712–717Google Scholar
  43. De La Torre-Roche R et al (2013) multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47(21):12539–12547CrossRefGoogle Scholar
  44. De Martino A et al (2012) Removal of 4-chloro-2-methylphenoxyacetic acid from water by sorption on carbon nanotubes and metal oxide nanoparticles. RSC Adv 2(13):5693–5700CrossRefGoogle Scholar
  45. Derjaguin BV, Churaev NV, Muller VM (1987) Wetting films. In: Surface forces. Springer, pp 327–367Google Scholar
  46. Deryabin DG et al (2014) The activity of [60]fullerene derivatives bearing amine and carboxylic solubilizing groups against Escherichia coli: a comparative study. J Nanomat 2014Google Scholar
  47. Dhall S, Jaggi N, Nathawat R (2013) Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sens Actuators, A 201:321–327CrossRefGoogle Scholar
  48. Dillon AC et al (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386(6623):377–379CrossRefGoogle Scholar
  49. Dinesh R et al (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173:19–27CrossRefGoogle Scholar
  50. Dong L, Henderson A, Field C (2012) Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants. J NanotechnolGoogle Scholar
  51. Dosunmu E et al (2015) Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: a potential mechanism for their antimicrobial effect. Int J Nanomed 10:5025–5034CrossRefGoogle Scholar
  52. Dresselhaus MS, Dresselhaus G, Saito R (1992) Carbon fibers based on C60 and their symmetry. Phys Rev B 45(11):6234–6242CrossRefGoogle Scholar
  53. Duncan LK, Jinschek JR, Vikesland PJ (2007) C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge. Environ Sci Technol 42(1):173–178CrossRefGoogle Scholar
  54. Edgington AJ et al (2014) Microscopic investigation of single-wall carbon nanotube uptake by Daphnia magna. Nanotoxicology 8(SUPPL 1):2–10CrossRefGoogle Scholar
  55. El-Barbary AA (2016) Potential energy of H2 inside the C116 fullerene dimerization: an atomic analysis. J Mol Struct 1112:9–13CrossRefGoogle Scholar
  56. Er S, De Wijs GA, Brocks G (2015) Improved hydrogen storage in Ca-decorated boron heterofullerenes: a theoretical study. J Mat Chem A 3(15):7710–7714CrossRefGoogle Scholar
  57. Esquivel EV, Murr LE (2004) A TEM analysis of nanoparticulates in a Polar ice core. Mater Charact 52(1):15–25CrossRefGoogle Scholar
  58. Fang J et al (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41(7):2636–2642CrossRefGoogle Scholar
  59. Farré M et al (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393(1):81–95CrossRefGoogle Scholar
  60. Farré Ml et al (2010) First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J Hydrol 383:44–51Google Scholar
  61. Fastow M et al (1992) IR spectra of CO and NO adsorbed on C60. J Phys Chem 96(15):6126–6128CrossRefGoogle Scholar
  62. Fastow M, Kozirovski Y, Folman M (1993) IR spectra of CO2 and N2O adsorbed on C60 and other carbon allotropes—a comparative study. J Electron Spectrosc Relat Phenom 64–65(C):843–848Google Scholar
  63. Folman M, Fastow M, Kozirovski Y (1997) Surface heterogeneity of C60 as studied by infrared spectroscopy of adsorbed CO and adsorption potential calculations. Langmuir 13(5):1118–1122CrossRefGoogle Scholar
  64. Fortner JD et al (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39(11):4307–4316CrossRefGoogle Scholar
  65. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418CrossRefGoogle Scholar
  66. Fu Y et al (2014) Water-dispersible magnetic nanoparticle-graphene oxide composites for selenium removal. Carbon 77:710–721CrossRefGoogle Scholar
  67. Gao Y et al (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368(1):540–546CrossRefGoogle Scholar
  68. Goel A et al (2002) Combustion synthesis of fullerenes and fullerenic nanostructures. Carbon 40(2):177–182CrossRefGoogle Scholar
  69. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13(5):1145–1155CrossRefGoogle Scholar
  70. Guo T et al (1995) Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 243(1–2):49–54CrossRefGoogle Scholar
  71. Guo X et al (2013) Biological uptake and depuration of radio-labeled graphene by Daphnia magna. Environ Sci Technol 47(21):12524–12531CrossRefGoogle Scholar
  72. Guo Y et al (2016) Removal of anionic azo dye from water with activated graphene oxide: kinetic, equilibrium and thermodynamic modeling. RSC Adv 6(46):39762–39773CrossRefGoogle Scholar
  73. Gupta VK et al (2016) Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Crit Rev Env Sci Technol 46(2):93–118CrossRefGoogle Scholar
  74. Hao X et al (2015) Metal ion-coordinated carboxymethylated chitosan grafted carbon nanotubes with enhanced antibacterial properties. RSC Adv 6(1):39–43CrossRefGoogle Scholar
  75. Hendren CO et al (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45(7):2562–2569CrossRefGoogle Scholar
  76. Heymann D (1996) Solubility of fullerenes C60 and C70 in seven normal alcohols and their deduced solubility in water. Fullerene Sci Technol 4(3):509–515CrossRefGoogle Scholar
  77. Hilding J et al (2001) Sorption of butane on carbon multiwall nanotubes at room temperature. Langmuir 17(24):7540–7544CrossRefGoogle Scholar
  78. Hou W-C, Jafvert CT (2008) Photochemical transformation of aqueous C60 clusters in sunlight. Environ Sci Technol 43(2):362–367CrossRefGoogle Scholar
  79. Hwang YS, Li Q (2010) Characterizing photochemical transformation of aqueous nC60 under environmentally relevant conditions. Environ Sci Technol 44(8):3008–3013CrossRefGoogle Scholar
  80. Ihsanullah et al (2016) Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157:141–161Google Scholar
  81. Isaacson CW et al (2007) Quantification of fullerenes by LC/ESI-MS and its application to in vivo toxicity assays. Anal Chem 79(23):9091–9097CrossRefGoogle Scholar
  82. Ismail IMK, Rodgers SL (1992) Comparisons between fullerene and forms of well-known carbons. Carbon 30(2):229–239CrossRefGoogle Scholar
  83. Jafvert CT, Kulkarni PP (2008) Buckminsterfullerene’s (C60) octanol-water partition coefficient (Kow) and aqueous solubility. Environ Sci Technol 42(16):5945–5950CrossRefGoogle Scholar
  84. Jehlička J et al (2003) Evidence for fullerenes in solid bitumen from pillow lavas of Proterozoic age from Mítov (Bohemian Massif, Czech Republic). Geochim Cosmochim Acta 67(8):1495–1506CrossRefGoogle Scholar
  85. Ji L et al (2010) Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching. Environ Sci Technol 44(16):6429–6436CrossRefGoogle Scholar
  86. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89CrossRefGoogle Scholar
  87. Jiang Y et al (2016) Magnetic chitosan-graphene oxide composite for anti-microbial and dye removal applications. Int J Biol Macromol 82:702–710CrossRefGoogle Scholar
  88. Jin X et al (2007) Estrogenic compounds removal by fullerene-containing membranes. Desalination 214(1–3):83–90CrossRefGoogle Scholar
  89. Jing L, Li X (2016) Facile synthesis of PVA/CNTs for enhanced adsorption of Pb2+ and Cu2+ in single and binary system. Desalin Water Treat 1–14Google Scholar
  90. Johansen A et al (2008) Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27(9):1895–1903CrossRefGoogle Scholar
  91. Journet C et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758CrossRefGoogle Scholar
  92. Kang S et al (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673CrossRefGoogle Scholar
  93. Kang S et al (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13):6409–6413CrossRefGoogle Scholar
  94. Karakuscu A et al (2015) SiOCN functionalized carbon nanotube gas sensors for elevated temperature applications. J Am Ceram Soc 98(4):1142–1149CrossRefGoogle Scholar
  95. Karumuri AK et al (2016) Silver nanoparticles supported on carbon nanotube carpets: influence of surface functionalization. Nanotechnology 27(14)Google Scholar
  96. Khan IA et al (2013) Single-walled carbon nanotube transport in representative municipal solid waste landfill conditions. Environ Sci Technol 47(15):8425–8433Google Scholar
  97. Kim HH et al (2015) Clean transfer of wafer-scale graphene via liquid phase removal of polycyclic aromatic hydrocarbons. ACS Nano 9(5):4726–4733CrossRefGoogle Scholar
  98. Klaper R et al (2010) Functionalization impacts the effects of carbon nanotubes on the immune system of rainbow trout, Oncorhynchus mykiss. Aquat Toxicol 100(2):211–217CrossRefGoogle Scholar
  99. Kolkman A et al (2013) Analysis of (functionalized) fullerenes in water samples by liquid chromatography coupled to high-resolution mass spectrometry. Anal Chem 85(12):5867–5874CrossRefGoogle Scholar
  100. Kroto HW et al (1985) C60: Buckminsterfullerene. Nature 318(6042):162–163CrossRefGoogle Scholar
  101. Kwon YK (2010) Hydrogen adsorption on sp2-bonded carbon structures: ab-initio study. J Korean Phys Soc 57(4):778–786CrossRefGoogle Scholar
  102. Lai YT, Kuo JC, Yang YJ (2014) A novel gas sensor using polymer-dispersed liquid crystal doped with carbon nanotubes. Sens Actuators, A 215:83–88CrossRefGoogle Scholar
  103. Lammel T, Boisseaux P, Navas JM (2015) Potentiating effect of graphene nanomaterials on aromatic environmental pollutant-induced cytochrome P450 1A expression in the topminnow fish hepatoma cell line PLHC-1. Environ Toxicol 30(10):1192–1204CrossRefGoogle Scholar
  104. Lawal AT (2016) Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Mater Res Bull 73:308–350CrossRefGoogle Scholar
  105. Leary R, Westwood A (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49(3):741–772CrossRefGoogle Scholar
  106. Lee J et al (2009) Transformation of aggregated C60 in the aqueous phase by UV irradiation. Environ Sci Technol 43(13):4878–4883CrossRefGoogle Scholar
  107. Lee KJ, Cha E, Park HD (2016) High antibiofouling property of vertically aligned carbon nanotube membranes at a low cross-flow velocity operation in different bacterial solutions. Desalin Water Treat 1–11Google Scholar
  108. Leid JG et al (2012) In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother 67(1):138–148CrossRefGoogle Scholar
  109. Lerman I et al (2013) Adsorption of carbamazepine by carbon nanotubes: effects of DOM introduction and competition with phenanthrene and bisphenol A. Environ Pollut 182:169–176CrossRefGoogle Scholar
  110. Li YH et al (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792CrossRefGoogle Scholar
  111. Li YH et al (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39(4):605–609CrossRefGoogle Scholar
  112. Li D et al (2008a) Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension. Environ Toxicol Chem 27(9):1888–1894CrossRefGoogle Scholar
  113. Li Y et al (2008b) Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions. Environ Sci Technol 42(19):7174–7180CrossRefGoogle Scholar
  114. Li N et al (2011) Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties. J Solid State Chem 184(4):953–958CrossRefGoogle Scholar
  115. Li Y et al (2012a) One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: synthesis, characterizations, properties and applications. Crit Rev Solid State Mater Sci 37(1):1–74CrossRefGoogle Scholar
  116. Li S et al (2012b) Fabrication of magnetic Ni nanoparticles functionalized water-soluble graphene sheets nanocomposites as sorbent for aromatic compounds removal. J Hazard Mater 229–230:42–47CrossRefGoogle Scholar
  117. Li J, Liu CY, Liu Y (2012c) Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem 22(17):8426–8430CrossRefGoogle Scholar
  118. Li Y et al (2012d) Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater Res Bull 47(8):1898–1904CrossRefGoogle Scholar
  119. Li H et al (2016) Adsorption mechanism of different organic chemicals on fluorinated carbon nanotubes. Chemosphere 154:258–265CrossRefGoogle Scholar
  120. Liu C et al (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442):1127–1129CrossRefGoogle Scholar
  121. Liu Z et al (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci 105(5):1410–1415CrossRefGoogle Scholar
  122. Liu F et al (2012a) Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl Mat Interfaces 4(2):922–927CrossRefGoogle Scholar
  123. Liu T et al (2012b) Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf, B 90(1):197–203Google Scholar
  124. Liu YZ et al (2016a) Antibacterial properties of multi-walled carbon nanotubes decorated with silver nanoparticles. Curr Nanosci 12(4):411–415CrossRefGoogle Scholar
  125. Liu Y et al (2016b) Synthesis of magnetic polyaniline/graphene oxide composites and their application in the efficient removal of Cu(II) from aqueous solutions. J Env Chem Eng 4(1):825–834CrossRefGoogle Scholar
  126. Liu F et al (2016c) Magnetic porous silica-graphene oxide hybrid composite as a potential adsorbent for aqueous removal of p-nitrophenol. Colloids Surf, A 490:207–214CrossRefGoogle Scholar
  127. Lovern S, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25(4):1132–1137CrossRefGoogle Scholar
  128. Lubezky A, Kozirovski Y, Folman M (1993) Induced IR spectra of N2 and O2 adsorbed on evaporated films of ionic crystals. J Phys Chem 97(5):1050–1054CrossRefGoogle Scholar
  129. Lubezky A, Chechelnitsky L, Folman M (1996) IR spectra of CH4, CD4, C2H4, C2H2, CH3OH and CH3OD adsorbed on C60 films. J Chem Soc Faraday Trans 92(12):2269–2274CrossRefGoogle Scholar
  130. Lubezky A, Kozirovski Y, Folman M (1998) IR spectral shifts and adsorption potentials of CO and N2 adsorbed on LiF and LiCl. J Electron Spectrosc Relat Phenom 95(1):37–44CrossRefGoogle Scholar
  131. Lyon DY, Alvarez PJJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42(21):8127–8132CrossRefGoogle Scholar
  132. Lyon DY et al (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40(14):4360–4366CrossRefGoogle Scholar
  133. Lyon DY et al (2008) Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett 8(5):1539–1543CrossRefGoogle Scholar
  134. Magrez A et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6(6):1121–1125CrossRefGoogle Scholar
  135. Mananghaya M (2015) Hydrogen adsorption of novel N-doped carbon nanotubes functionalized with Scandium. Int J Hydrogen Energy 40(30):9352–9358CrossRefGoogle Scholar
  136. Manna SK et al (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kB in human keratinocytes. Nano Lett 5(9):1676–1684CrossRefGoogle Scholar
  137. Mesarič T et al (2013) Effects of nano carbon black and single-layer graphene oxide on settlement, survival and swimming behaviour of Amphibalanus amphitrite larvae. Chem Ecol 29(7):643–652CrossRefGoogle Scholar
  138. Meyyappan M (2016) Carbon nanotube-based chemical sensors. Small 12(16):2118–2129CrossRefGoogle Scholar
  139. Mochalin VN et al (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7(1):11–23CrossRefGoogle Scholar
  140. Mortazavi SS, Farmany A (2016) High adsorption capacity of MWCNTs for removal of anionic surfactant SDBS from aqueous solutions. J Water Supply: Res Technol AQUA 65(1):37–42Google Scholar
  141. Mu H et al (2014) Fabrication and characterization of amino group functionalized multiwall carbon nanotubes (MWCNT) formaldehyde gas sensors. IEEE Sens J 14(7):2362–2368CrossRefGoogle Scholar
  142. Muller J et al (2008) Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem Res Toxicol 21(9):1698–1705CrossRefGoogle Scholar
  143. Murr LE, Soto KF (2005) A TEM study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources. Mater Charact 55(1):50–65CrossRefGoogle Scholar
  144. Murr LE et al (2004a) Chemistry and nanoparticulate compositions of a 10,000 year-old ice core melt water. Water Res 38(19):4282–4296CrossRefGoogle Scholar
  145. Murr LE et al (2004b) Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air. J Nanopart Res 6(2):241–251CrossRefGoogle Scholar
  146. Murr L et al (2006) Combustion-generated nanoparticulates in the El Paso, TX, USA/Juarez, Mexico Metroplex: their comparative characterization and potential for adverse health effects. Int J Env Res Public Health 3(1):48–66CrossRefGoogle Scholar
  147. Murray AR et al (2009) Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257(3):161–171CrossRefGoogle Scholar
  148. Naghadeh SB et al (2016) Functionalized MWCNTs effects on dramatic enhancement of MWCNTs/SnO2 nanocomposite gas sensing properties at low temperatures. Sens Actuators, B Chem 223:252–260CrossRefGoogle Scholar
  149. Nakagawa T, Kokubo K, Moriwaki H (2014) Application of fullerenes-extracted soot modified with ethylenediamine as a novel adsorbent of hexavalent chromium in water. J Env Chem Eng 2(2):1191–1198CrossRefGoogle Scholar
  150. Nakamura S, Mashino T (2009) Biological activities of water-soluble fullerene derivatives. J Phys Conf Ser 159Google Scholar
  151. Navarro DA et al (2013) Behaviour of fullerenes (C60) in the terrestrial environment: potential release from biosolids-amended soils. J Hazard Mater 262:496–503CrossRefGoogle Scholar
  152. Ncibi MC, Sillanpää M (2015) Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J Hazard Mater 298:102–110CrossRefGoogle Scholar
  153. Ncibi MC, Gaspard S, Sillanpää M (2015) As-synthesized multi-walled carbon nanotubes for the removal of ionic and non-ionic surfactants. J Hazard Mater 286:195–203CrossRefGoogle Scholar
  154. Núñez O et al (2012) Atmospheric pressure photoionization mass spectrometry of fullerenes. Anal Chem 84(12):5316–5326CrossRefGoogle Scholar
  155. Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112(10):1058CrossRefGoogle Scholar
  156. Oyetade OA et al (2015) Effectiveness of carbon nanotube-cobalt ferrite nanocomposites for the adsorption of rhodamine B from aqueous solutions. RSC Adv 5(29):22724–22739CrossRefGoogle Scholar
  157. Oyetade OA et al (2016) Nitrogen-functionalised carbon nanotubes as a novel adsorbent for the removal of Cu(ii) from aqueous solution. RSC Adv 6(4):2731–2745CrossRefGoogle Scholar
  158. Ozturk Z, Baykasoglu C, Kirca M (2016) Sandwiched graphene-fullerene composite: a novel 3-D nanostructured material for hydrogen storage. Int J Hydrogen Energy 41(15):6403–6411CrossRefGoogle Scholar
  159. Pakarinen K et al (2011) Adverse effects of fullerenes (nC60) spiked to sediments on Lumbriculus variegatus (Oligochaeta). Environ Pollut 159(12):3750–3756CrossRefGoogle Scholar
  160. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42(24):9005–9013CrossRefGoogle Scholar
  161. Papirer E et al (1999) Comparison of the surface properties of graphite, carbon black and fullerene samples, measured by inverse gas chromatography. Carbon 37(8):1265–1274CrossRefGoogle Scholar
  162. Park JW et al (2011) The association between nC 60 and 17α-ethinylestradiol (EE2) decreases EE2 bioavailability in zebrafish and alters nanoaggregate characteristics. Nanotoxicology 5(3):406–416CrossRefGoogle Scholar
  163. Patchkovskii S et al (2005) Graphene nanostructures as tunable storage media for molecular hydrogen. Proc Natl Acad Sci USA 102(30):10439–10444CrossRefGoogle Scholar
  164. Pérez S, Farré Ml, Barceló D (2009a) Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. TrAC Trends Anal Chem 28(6):820–832CrossRefGoogle Scholar
  165. Pérez S, Farré MI, Barceló D (2009b) Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. TrAC. Trends Anal Chem 28(6):820–832CrossRefGoogle Scholar
  166. Petersen EJ et al (2009a) Biological uptake and depuration of carbon nanotubes by Daphnia magna. Environ Sci Technol 43(8):2969–2975CrossRefGoogle Scholar
  167. Petersen EJ et al (2009b) Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms. Environ Sci Technol 43(11):4181–4187CrossRefGoogle Scholar
  168. Petersen EJ et al (2014) Methods to assess the impact of UV irradiation on the surface chemistry and structure of multiwall carbon nanotube epoxy nanocomposites. Carbon 69:194–205CrossRefGoogle Scholar
  169. Pinzón JR, Villalta-Cerdas A, Echegoyen L (2012) Fullerenes, carbon nanotubes, and graphene for molecular electronics. In: Topics in current chemistry, pp 127–174Google Scholar
  170. Prabhakaran PK, Deschamps J (2015) Room temperature hydrogen uptake in single walled carbon nanotubes incorporated MIL-101 doped with lithium: effect of lithium doping. J Porous Mater 22(6):1635–1642CrossRefGoogle Scholar
  171. Pretti C et al (2014) Ecotoxicity of pristine graphene to marine organisms. Ecotoxicol Environ Saf 101:138–145CrossRefGoogle Scholar
  172. Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4(3):668–674CrossRefGoogle Scholar
  173. Pupysheva OV, Farajian AA, Yakobson BI (2008) Fullerene nanocage capacity for hydrogen storage. Nano Lett 8(3):767–774CrossRefGoogle Scholar
  174. Pyrzynska K, Stafiej A, Biesaga M (2007) Sorption behavior of acidic herbicides on carbon nanotubes. Microchim Acta 159(3–4):293–298CrossRefGoogle Scholar
  175. Qu X, Alvarez PJJ, Li Q (2013) Photochemical transformation of carboxylated multi-walled carbon nanotubes: role of reactive oxygen species. Environ Sci Technol 47(24):14080–14088CrossRefGoogle Scholar
  176. Ramesha GK et al (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361(1):270–277CrossRefGoogle Scholar
  177. Russier J et al (2010) Oxidative biodegradation of single-and multi-walled carbon nanotubes. Nanoscale 3(3):893–896CrossRefGoogle Scholar
  178. Sanchís J et al (2012) Occurrence of aerosol-bound fullerenes in the mediterranean sea atmosphere. Environ Sci Technol 46(3):1335–1343CrossRefGoogle Scholar
  179. Sanchís J et al (2013) Quantitative trace analysis of fullerenes in river sediment from Spain and soils from Saudi Arabia. Anal Bioanal Chem 405(18):5915–5923CrossRefGoogle Scholar
  180. Sanchís J et al (2015) Liquid chromatography-atmospheric pressure photoionization-Orbitrap analysis of fullerene aggregates on surface soils and river sediments from Santa Catarina (Brazil). Sci Total Environ 505:172–179CrossRefGoogle Scholar
  181. Sanchís J et al (2016) New insights on the influence of organic co-contaminants on the aquatic toxicology of carbon nanomaterials. Environ Sci Technol 50(2):961–969CrossRefGoogle Scholar
  182. Sayes CM et al (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36):7587–7595CrossRefGoogle Scholar
  183. Sayes CM et al (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161(2):135–142CrossRefGoogle Scholar
  184. Scalese S et al (2016) Cationic and anionic azo-dye removal from water by sulfonated graphene oxide nanosheets in Nafion membranes. New J Chem 40(4):3654–3663CrossRefGoogle Scholar
  185. Schwab F et al (2013) Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. Environ Sci Technol 47(13):7012–7019Google Scholar
  186. Scott-Fordsmand JJ et al (2008) The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms. Ecotoxicol Environ Saf 71(3):616–619CrossRefGoogle Scholar
  187. Sedaghat S (2015) Anchoring of silver nanoparticles onto functionalized multiwall-carbon nanotube and evaluation of antibacterial effects. Fullerenes, Nanotubes, Carbon Nanostruct 23(6):483–487CrossRefGoogle Scholar
  188. Sedlmair J et al (2013) Interaction between carbon nanotubes and soil colloids studied with X-ray spectromicroscopy. Chem Geol 329:32–41CrossRefGoogle Scholar
  189. Sekar M, Sakthi V, Rengaraj S (2004) Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J Colloid Interface Sci 279(2):307–313CrossRefGoogle Scholar
  190. Shahriary L et al (2015) One-step synthesis of Ag-reduced graphene oxide-multiwalled carbon nanotubes for enhanced antibacterial activities. New J Chem 39(6):4583–4590CrossRefGoogle Scholar
  191. Shan D et al (2016) Preparation of regenerable granular carbon nanotubes by a simple heating-filtration method for efficient removal of typical pharmaceuticals. Chem Eng J 294:353–361CrossRefGoogle Scholar
  192. Sharma M, Madras G, Bose S (2015) Unique nanoporous antibacterial membranes derived through crystallization induced phase separation in PVDF/PMMA blends. J Mat Chem A 3(11):5991–6003CrossRefGoogle Scholar
  193. Shi H et al (2016) Effect of polyethylene glycol on the antibacterial properties of polyurethane/carbon nanotube electrospun nanofibers. RSC Adv 6(23):19238–19244CrossRefGoogle Scholar
  194. Shvedova AA et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol-Lung Cell Mol Physiol 289(5):L698–L708CrossRefGoogle Scholar
  195. Simon-Deckers A et al (2009) Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43(21):8423–8429CrossRefGoogle Scholar
  196. Singh AK, Ribas MA, Yakobson BI (2009) H-spillover through the catalyst saturation: an ab initio thermodynamics study. ACS Nano 3(7):1657–1662CrossRefGoogle Scholar
  197. Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82(2):94–109CrossRefGoogle Scholar
  198. Sohn EK et al (2015) Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms. BioMed Res Int 2015Google Scholar
  199. Sotelo JL et al (2012) Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials. J Env Sci Health—Part B Pesticides, Food Contam, Agric Wastes 47(7):640–652CrossRefGoogle Scholar
  200. Sotoma S et al (2015) Comprehensive and quantitative analysis for controlling the physical/chemical states and particle properties of nanodiamonds for biological applications. RSC Adv 5(18):13818–13827CrossRefGoogle Scholar
  201. Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58(1):49–52CrossRefGoogle Scholar
  202. Su F, Lu C (2007) Adsorption kinetics, thermodynamics and desorption of natural dissolved organic matter by multiwalled carbon nanotubes. J Environ Sci Health—Part A Toxic/Hazard Subst Environ Eng 42(11):1543–1552CrossRefGoogle Scholar
  203. Su Y et al (2013) Risks of single-walled carbon nanotubes acting as contaminants-carriers: potential release of phenanthrene in Japanese Medaka (Oryzias latipes). Environ Sci Technol 47(9):4704–4710CrossRefGoogle Scholar
  204. Sui Z et al (2012) Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem 22(18):8767–8771CrossRefGoogle Scholar
  205. Sun Q et al (2005) Clustering of Ti on a C60 surface and its effect on hydrogen storage. J Am Chem Soc 127(42):14582–14583CrossRefGoogle Scholar
  206. Sun Q et al (2006) First-principles study of hydrogen storage on Li12C60. J Am Chem Soc 128(30):9741–9745CrossRefGoogle Scholar
  207. Sun X et al (2015) Removal of sudan dyes from aqueous solution by magnetic carbon nanotubes: equilibrium, kinetic and thermodynamic studies. J Ind Eng Chem 22:373377CrossRefGoogle Scholar
  208. Taha MR, Mobasser S (2015) Adsorption of DDT and PCB by nanomaterials from residual soil. PLoS ONE 10(12)Google Scholar
  209. Tang Y et al (2013) Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf, A 424:74–80CrossRefGoogle Scholar
  210. Tao X et al (2011) Effects of stable aqueous fullerene nanocrystal (nC60) on Daphnia magna: evaluation of hop frequency and accumulations under different conditions. J Env Sci 23(2):322–329CrossRefGoogle Scholar
  211. Tegos GP et al (2005) Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem Biol 12(10):1127–1135CrossRefGoogle Scholar
  212. Tervonen K et al (2011) Analysis of fullerene-C60 and kinetic measurements for its accumulation and depuration in Daphnia magna. Environ Toxicol Chem 29(5):1072–1078Google Scholar
  213. Thornton AW et al (2009) Metal-organic frameworks impregnated with magnesium-decorated fullerenes for methane and hydrogen storage. J Am Chem Soc 131(30):10662–10669CrossRefGoogle Scholar
  214. Tong Z et al (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41(8):2985–2991CrossRefGoogle Scholar
  215. Van der Ploeg MJC et al (2011) Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics. Environ Pollut 159(1):198–203CrossRefGoogle Scholar
  216. Van der Ploeg MJC et al (2013) C60 exposure induced tissue damage and gene expression alterations in the earthworm Lumbricus rubellus. Nanotoxicology 7(4):432–440CrossRefGoogle Scholar
  217. Velzeboer I, Peeters ETHM, Koelmans AA (2013) Multiwalled carbon nanotubes at environmentally relevant concentrations affect the composition of benthic communities. Environ Sci Technol 47(13):7475–7482Google Scholar
  218. Verwey EJW, Overbeek JTG, Overbeek JTG (1999) Theory of the stability of lyophobic colloids. Courier Dover PublicationsGoogle Scholar
  219. Wang X et al (2005) Sorption of 243Am(III) to multiwall carbon nanotubes. Environ Sci Technol 39(8):2856–2860CrossRefGoogle Scholar
  220. Wang C, Shang C, Westerhoff P (2010a) Quantification of fullerene aggregate nC60 in wastewater by high-performance liquid chromatography with UV-vis spectroscopic and mass spectrometric detection. Chemosphere 80(3):334–339Google Scholar
  221. Wang Y et al (2010b) Transport and retention of fullerene nanoparticles in natural soils. J Environ Qual 39(6):1925–1933 (All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher)Google Scholar
  222. Wang S et al (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J 226:336–347CrossRefGoogle Scholar
  223. Wang H et al (2015) Facile synthesis of polypyrrole decorated reduced graphene oxide-Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem Eng J 262:597–606CrossRefGoogle Scholar
  224. Wang H, Chen Y, Wei Y (2016a) A novel magnetic calcium silicate/graphene oxide composite material for selective adsorption of acridine orange from aqueous solutions. RSC Adv 6(41):34770–34781Google Scholar
  225. Wang LP et al (2016b) Adsorption behavior of ACF/CNT composites for Cr(VI) from aqueous solution. In: Material science and environmental engineering—proceedings of the 3rd annual 2015 international conference on material science and environmental engineering, ICMSEE 2015Google Scholar
  226. Wiesner MR et al (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345CrossRefGoogle Scholar
  227. Wigginton NS, Haus KL, Hochella MF Jr (2007) Aquatic environmental nanoparticles. J Environ Monit 9(12):1306–1316CrossRefGoogle Scholar
  228. Wu Y-Y, Xiong Z-H (2016) Multi-walled carbon nanotubes and powder-activated carbon adsorbents for the removal of nitrofurazone from aqueous solution. J Dispersion Sci Technol 37(5):613–624CrossRefGoogle Scholar
  229. Wu HX et al (2013a) In situ growth of monodispersed Fe3O4 nanoparticles on graphene for the removal of heavy metals and aromatic compounds. Water Sci Technol 68(11):2351–2358CrossRefGoogle Scholar
  230. Wu Q et al (2013b) Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. Nanoscale 5(20):9934–9943CrossRefGoogle Scholar
  231. Xiao Y, Chae S-R, Wiesner MR (2011) Quantification of fullerene (C60) in aqueous samples and use of C70 as surrogate standard. Chem Eng J 170(2–3):555–561CrossRefGoogle Scholar
  232. Xing B, Xu J, Huang PM (2010) Environmental and colloidal behavior of engineered nanoparticles. In: Molecular environmental soil science at the interfaces in the Earth’s critical zone. Springer, Berlin, Heidelberg, pp 246–248Google Scholar
  233. Xu J, Wang L, Zhu Y (2012) Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 28(22):8418–8425CrossRefGoogle Scholar
  234. Yamaguchi U, Bergamasco NR, Hamoudi S (2016) Magnetic MnFe2O4-graphene hybrid composite for efficient removal of glyphosate from water. Chem Eng J 295:391–402CrossRefGoogle Scholar
  235. Yan XM et al (2008) Adsorption and desorption of atrazine on carbon nanotubes. J Colloid Interface Sci 321(1):30–38CrossRefGoogle Scholar
  236. Yan H et al (2016) Efficient removal of chlorophenols from water with a magnetic reduced graphene oxide composite. Sci China Chem 59(3):350–359CrossRefGoogle Scholar
  237. Yang RT (2000) Hydrogen storage by alkali-doped carbon nanotubes-revisited. Carbon 38(4):623–626CrossRefGoogle Scholar
  238. Yang S-T et al (2008) Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett 181(3):182–189CrossRefGoogle Scholar
  239. Yang DH et al (2009) Fullerene nanohybrid metal oxide ultrathin films. Curr Appl Phys 9(2 SUPPL)Google Scholar
  240. Yang W et al (2010a) Carbon nanomaterials in biosensors: should you use nanotubes or graphene. Angewandte Chemie—Int Ed 49(12):2114–2138CrossRefGoogle Scholar
  241. Yang C et al (2010b) Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26(20):16013–16019CrossRefGoogle Scholar
  242. Yang J et al (2013) Transport of oxidized multi-walled carbon nanotubes through silica based porous media: influences of aquatic chemistry, surface chemistry, and natural organic matter. Environ Sci Technol 47(24):14034–14043CrossRefGoogle Scholar
  243. Yang X et al (2014) Fullerene-biomolecule conjugates and their biomedicinal applications. Int J Nanomed 9(1):77–92CrossRefGoogle Scholar
  244. Yang K, Chen B, Zhu L (2015) Graphene-coated materials using silica particles as a framework for highly efficient removal of aromatic pollutants in water. Sci Rep 5Google Scholar
  245. Yu Y, Wu L, Zhi J (2014) Diamond nanowires: fabrication, structure, properties, and applications. Angewandte Chemie—Int Ed 53(52):14326–14351CrossRefGoogle Scholar
  246. Yu JG et al (2015a) Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions. Sci Total Environ 502:70–79CrossRefGoogle Scholar
  247. Yu F, Ma J, Bi D (2015b) Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene. Environ Sci Pollut Res 22(6):4715–4724CrossRefGoogle Scholar
  248. Yu F et al (2016) Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution. Chemosphere 146:162–172CrossRefGoogle Scholar
  249. Yun H et al (2013) Antibacterial activity of CNT-Ag and GO-Ag nanocomposites against gram-negative and gram-positive bacteria. Bull Korean Chem Soc 34(11):3261–3264CrossRefGoogle Scholar
  250. Zhang L et al (2012) Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling. Environ Sci Technol 46(13):7230–7238CrossRefGoogle Scholar
  251. Zhang C et al (2013) Adsorption of polycyclic aromatic hydrocarbons (fluoranthene and anthracenemethanol) by functional graphene oxide and removal by pH and temperature-sensitive coagulation. ACS Appl Mat Interfaces 5(11):4783–4790CrossRefGoogle Scholar
  252. Zhang Y et al (2014) Recyclable removal of bisphenol A from aqueous solution by reduced graphene oxide-magnetic nanoparticles: adsorption and desorption. J Colloid Interface Sci 421:85–92CrossRefGoogle Scholar
  253. Zhang C et al (2016) Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution. Water Res 95:103–112CrossRefGoogle Scholar
  254. Zhao G et al (2011a) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45(24):10454–10462CrossRefGoogle Scholar
  255. Zhao G et al (2011b) Removal of Pb(ii) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans 40(41):10945–10952CrossRefGoogle Scholar
  256. Zhao G et al (2012) Preconcentration of U(vi) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41(20):6182–6188CrossRefGoogle Scholar
  257. Zhao J et al (2014) Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation. Environ Sci Technol 48(1):331–339CrossRefGoogle Scholar
  258. Zhu X et al (2009) Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanopart Res 11(1):67–75CrossRefGoogle Scholar
  259. Zhu J et al (2012) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46(2):977–985CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marinella Farré
    • 1
    Email author
  • Josep Sanchís
    • 1
  • Damià Barceló
    • 1
    • 2
  1. 1.Institute of Environmental Assessment and Water Research (IDAEA-CSIC)BarcelonaSpain
  2. 2.Catalan Institute of Water Research (ICRA)GironaSpain

Personalised recommendations