Advertisement

Environmental Nanoremediation and Electron Microscopies

  • Elisabetta Carata
  • Elisa Panzarini
  • Luciana DiniEmail author
Chapter

Abstract

Cleaning up the environment from various sources of pollution is a commitment to not only preserve ecological health but also human health. Pollution in the environment can be remediated using a range of techniques including nanotechnologies. Environmental remediation techniques use various approach to remove or degrade environmental pollution in soils, waters, groundwater, and air. There are two different strategies to apply the nanotechnologies to environmental remediation: ex situ techniques that consist in the removing pollutant from sites and then treating; in situ techniques that make up of cleaning up directly in the polluted site. Both strategies are highly efficient but it’s necessary to know the nanomaterials used to nanoremediate the environment, so the electron microscopy offers an important tool to characterize and quantify NMs in environmental; evaluate NMs transformation in the environment and consequences for bioavailability and toxicity; analysis uptake and internal distribution of NMs in model animals. Research addressing these key topics will reduce the uncertainty in ecological risk assessment and support the sustainable development of nanotechnology.

Keywords

Environmental remediation Electron microscopy Nanomaterials 

References

  1. Bardos P, Bone B, Daly P, Elliott D, Jones S, Lowry G, Merly C (2014) A risk/benefit appraisal for the application of nano-scale zero valent iron (nZVI) for the remediation of contaminated sites. WP9 NanoRemGoogle Scholar
  2. Battin TJ, VonDerKammer F, Weilhartner A, Ottofuelling S, Hofmann T (2009) Nanostructured TiO2: transport behaviour and effects on aquatic microbial communities under environmental conditions. Environ Sci Technol 43:8098–8104. doi: 10.1021/es9017046 CrossRefGoogle Scholar
  3. Bekçi Z, Seki Y, Yurdakoç MK (2006) Equilibrium studies for trimethoprim adsorption on montmorillonite KSF. J Hazard Mater B133:233–242CrossRefGoogle Scholar
  4. Bennett P, He F, Zhao D, Aiken B, Feldman L (2010) In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. J Contam Hydrol 116:35–46CrossRefGoogle Scholar
  5. Berry D, Xi C, Raskin L (2006) Microbial ecology of drinking water distribution systems. Curr Opin Biotechnol 17:297–302. doi: 10.1016/j.copbio. 7 May 2006
  6. Bezbaruah AN, Krajangpan S, Chisholm BJ, Khan E, Bermudez JJE (2009) Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J Hazard Mater 166:1339–1343CrossRefGoogle Scholar
  7. Bogner A, Thollet G, Basset D, Jouneau PH, Gauthier C (2005) Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104(3–4):290–301CrossRefGoogle Scholar
  8. Callow JA, Osborne MP, Callow ME, Baker F, Donald AM (2003) Use of environmental scanning electron microscopy to image the spore adhesive of the marine alga Enteromorpha in its natural hydrated state. Colloids Surf B Biointerfaces 27(4):315–321Google Scholar
  9. Chekli L, Bayatsarmadi B, Sekine R, Sarkar B, Shen AM, Scheckel KG, Skinner W, Naidu R, Shon Lombi HK, Donner E (2000) Analytical characterisation of nanoscale zero-valent iron: a methodological review. Langmuir 16:2230–2236CrossRefGoogle Scholar
  10. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125CrossRefGoogle Scholar
  11. Daniel SCGK, Vinothini G, Subramanian N, Nehru K, Sivakumar M (2012) Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J Nanopart Res 15:1–10Google Scholar
  12. Darkin MG, Gilpin C, Williams JB, Sangha CM (2001) Direct wet surface imaging of an anaerobic biofilm by environmental scanning electron microscopy: application to landfill clay liner barriers. Scanning 23(5):346–350CrossRefGoogle Scholar
  13. Decho AW (2000) Exopolymer-mediated microdomains as a structuring agent for microbial activities. In: Riding R (ed) Microbial sediments. Springer, Berlin, pp 9–15Google Scholar
  14. Diallo MS, Balogh L, Shafagati A, Johnson JH, Goddard WAI, Tomalia DA (1999) Poly (amidoamine) dendrimers: a new class of high capacity chelating agents for Cu(II) ions. Environ Sci Technol 33(1999):820–824CrossRefGoogle Scholar
  15. Ding Z, Zhu HY, Lu GQ et al (1999) Photocatalytic properties of titania pillared clays by different drying methods. J Colloid Inter Sci 209:193–199CrossRefGoogle Scholar
  16. Dini L, Panzarini E, Mariano S, Passeri D, Reggente M, Rossi M, Vergallo C (2015) Microscopies at the nanoscale for nano-scale drug delivery systems. Curr Drug Targets 16(13):1512–1530CrossRefGoogle Scholar
  17. Doucet FJ, Lead JR, Maguire L, Achterberg EP, Millward GE (2005) Visualisation of natural aquatic colloids and particles—a comparison of conventional high vacuum and environmental scanning electron microscopy. J Environ Monit 7(2):115–121CrossRefGoogle Scholar
  18. Douglas S, Douglas DD (2001) Structural and geomicrobiological characteristics of a microbial community from a cold sulfide spring. Geomicrobiol J 18(4):401–422Google Scholar
  19. El Abed S, Ibnsouda SK, Latrache H, Hamadi F (2012) Scanning electron microscopy (SEM) and environmental SEM: suitable tools for study of adhesion stage and biofilm formationGoogle Scholar
  20. Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922–4926CrossRefGoogle Scholar
  21. Farré M, Sanchís J, Barcelo D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal Chem 30(3)Google Scholar
  22. Ferry JL, Craig P, Hexel C, Sisco P, Frey R, Pennington PL et al (2009) Transfer of gold nanoparticles from the water column to the estuarine food web. Nat Nanotechnol 4:441–444. doi: 10.1038/nnano.2009.157 CrossRefGoogle Scholar
  23. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. doi: 10.1038/nrmicro2415 Google Scholar
  24. Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205CrossRefGoogle Scholar
  25. Grassi M, Kaikioglu G, Belgiorno V, Lofrano G (2012) Removal of emerging contaminants from water and wastewater by adsorption process. In: Green chemistry for sustainabilityGoogle Scholar
  26. Grieger KD, Hjorth R, Rice J, Kumar N, Bang J (2015) Nano-remediation: tiny particles cleaning up big environmental problems. Blog entry for IUCN Google Scholar
  27. Hawari AH, Mulligan CN (2006) Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresour Technol 97:692–700. doi: 10.1016/j.biortech.2005.03.033 CrossRefGoogle Scholar
  28. Hochella MF Jr, Madden AS (2005) Earth’s nano-compartment for toxic metals. Elements 1:199–203CrossRefGoogle Scholar
  29. Hu Z, Hidalgo G, Houston PL, Hay AG, Shuler ML, Abruna HD et al (2005) Determination of spatial distributions of zinc and active biomass in microbial biofilms by two-photon laser scanning microscopy. Appl Environ Microbiol 71:4014–4021. doi: 10.1128/AEM.71.7.4014-4021.2005 CrossRefGoogle Scholar
  30. Huang YY, Liu F, Li HD (2009) Degradation of tetrachloromethane and tetrachloroethene by Ni/Fe bimetallic nanoparticles. J Phys Conf Ser 188:012014CrossRefGoogle Scholar
  31. Ikuma K, Madden AS, Decho AW, Lau BLT (2014) Deposition of nanoparticles onto polysaccharide-coated surfaces: implications for nanoparticle–biofilm interactions. Environ Sci Nano 1:117–122. doi: 10.1039/c3en00075c
  32. Ikuma K, Decho AW, Lau BLT (2015) When nanoparticles meet biofilms—interactions guiding the environmental fate and accumulation of nanoparticles. Front Microbiol 6. doi: 10.3389/fmicb.2015.00591
  33. Jaisi DP, Saleh NB, Blake RE, Elimelech M (2008) Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. Environ Sci Technol 42:8317–8323. doi: 10.1021/es801641v CrossRefGoogle Scholar
  34. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298CrossRefGoogle Scholar
  35. Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050CrossRefGoogle Scholar
  36. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1813–1831CrossRefGoogle Scholar
  37. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lion DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behaviour, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851CrossRefGoogle Scholar
  38. Kroll A, Behra R, Kaegi R, Sigg L (2014) Extracellular polymeric substances (EPS) of fresh water biofilms stabilize and modify CeO2 and Ag nanoparticles. PLoS One 9:e110709. doi: 10.1371/journal.pone.0110709
  39. Labrenz M, Banfield JF (2004) Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. Microb Ecol 47:205–217. doi: 10.1007/s00248-003-1025-8 Google Scholar
  40. Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM et al (2000) Formation of sphalerite (ZnS)deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747. doi: 10.1126/science.290.5497.1744 CrossRefGoogle Scholar
  41. Lecoanet HF, Wiesner MR (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38:4377–4382. doi: 10.1021/es035354f CrossRefGoogle Scholar
  42. Lehtola MJ, Miettinen IT, Keinanen MM, Kekki TK, Laine O, Hirvonen A et al (2004) Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res 38:3769–3779. doi: 10.1016/j.watres.2004.06.024 CrossRefGoogle Scholar
  43. Lin Y-T, Weng C-H, Chen F-Y (2008) Effective removal of AB24 dye by nano/micro-size zero-valent iron. Sep Purif Technol 64:26–30CrossRefGoogle Scholar
  44. Liu YQ, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39(1338):1345Google Scholar
  45. Mansoori GA, Bastami TR, Ahmadpour A, Eshaghi Z (2008) Environmental application of nanotechnology In: Annual review of nano research (Chapter 2), vol 2Google Scholar
  46. Muataz AA, Fettouhi M, Al-Mammum A, Yahya N (2009) Lead removal by using carbon nanotubes. Int J Nanopart 2:329–338CrossRefGoogle Scholar
  47. Mueller NC, Nowack B (2010) Nanoparticles for remediation: solving big problems with little particles, Elements 6:395–400. doi: 10.2113/gselements.6.6.395 (1811-5209/10/0006-0395$2.50)
  48. Naghizadeh A, Yari AR, Tashauoei HR, Mahdavi M, Derakhshani E, Rahimi R, Bahmani P (2012) Carbon nanotubes technology for removal of arsenic from water. Arch Hyg Sci 1(1):6–11Google Scholar
  49. Nalbandian MJ, Greenstein KE, Shuai D, Zhang M, Choa Y, Parkin GF, Myung NV, Cwiertny DM (2015) Synthesis of photoactive TiO2 nanofibers and Au/TiO2 nanofiber composites: structure and reactivity optimization for water treatment applications. Environ Sci Technol 49:1654–1663. doi: 10.1021/es502963t CrossRefGoogle Scholar
  50. Narayana RL, Matheswaran M, Abd Aziz A, Saravanan P (2011) Photocatalytic decolourization of basic green dye by pure and Fe, Co doped TiO2 under daylight illumination. Desalination 269(2011):249–253CrossRefGoogle Scholar
  51. Nassereldeen AK, Muataz AA, Abdullah A, Mohamed ES, Alam MD, Yahya N (2009) Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. J Environ Sci 21:539–544Google Scholar
  52. Nevius BA, Chen YP, Ferry JL, Decho AW (2012) Surface-functionalization effects on uptake of fluorescent polystyrene nanoparticles by model biofilms. Ecotoxicology 21:2205–2213. doi: 10.1007/s10646-012-0975-3 CrossRefGoogle Scholar
  53. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230CrossRefGoogle Scholar
  54. Nutt MO, Hughes JB, Wong MS (2005) Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ Sci Technol 39:1346–1353CrossRefGoogle Scholar
  55. Ötker HM, Akmehmet-Balcioğlu I (2005) Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite. J Hazard Mater 122:251–258CrossRefGoogle Scholar
  56. Part F, Zecha G, Cuson T, Sinner E-K, Huber-Humer M (2015) Current limitations and challenge in nanowaste detection, characterisation and monitoring. Waste Manag 43:407–420CrossRefGoogle Scholar
  57. PEN (2015) The project on emerging nanotechnologies. In: Nanoremediation map. Available: http://www.nanotechproject.org/inventories/remediation_map/
  58. Phenrat T, Kim HJ, Fagerlund F, Illagasekare T, Tilton RD, Lowry GV (2009) Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified FeO nanoparticles in sand columns. Environ Sci Technol 43:5079–5085. doi: 10.1021/es900171v CrossRefGoogle Scholar
  59. Ponder SMD, Darab JG, Mallouk TE (2001) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zerovalent iron. Environ Sci Technol 34(12):2564–2569CrossRefGoogle Scholar
  60. Prasad A, Leada JR, Baalousha M (2015) An electron microscopy based method for the detection and quantification of nanomaterial number concentration in environmentally relevant media. Sci Total Environ 537:479–486CrossRefGoogle Scholar
  61. Priester JH, Horst AM, Van De Werfhorst LC, Saleta JL, Mertes LAK, Holden PA (2007) Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy. J Microbiol Methods 68(2):577–587Google Scholar
  62. Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S (2009) Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res 43:2419–2430CrossRefGoogle Scholar
  63. Pyrzyńska K, Bystrzejewski M (2010) Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids Surf A Physicochem Eng Aspects 362(1–3):102–109CrossRefGoogle Scholar
  64. Qiu SR, Lai HF, Roberson MJ, Hunt ML, Amrhein C, Giancarlo LC, Flynn GW, Yarmoff JA (2016) Removal of contaminants from aqueous solution by reaction with iron surfaces. Anal Chim Acta 903:13–35. doi: 10.1016/j.aca.2015.10.040 Epub 2015 Nov 6CrossRefGoogle Scholar
  65. Quinn J, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon WS, Gavaskar A, Holdsworth T (2005) Field demonstration of DNAPL dehalogenation using emulsified zerovalent iron. Environ Sci Technol (39)Google Scholar
  66. Reith F, Rogers SL, Mcphail DC, Webb D (2006) Biomineralization of gold: biofilms on bacterioform gold. Science 313:233–236. doi: 10.1126/science.1125878 (Res 5:323–332)
  67. Reith F, Fairbrother L, Nolze G, Wilhelmi O, Clode PL, Gregg A et al (2010) Nanoparticle factories: biofilms hold the key to gold dispersion and nugget formation. Geology 38:843–846. doi: 10.1130/G31052.1 CrossRefGoogle Scholar
  68. Rether A, Schuster M (2003) Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers. React Funct Polym 57(2003):13–21CrossRefGoogle Scholar
  69. Rezaei M, Salem S (2016) Photocatalytic activity enhancement of anatase–graphene nanocomposite for methylene removal: degradation and kinetics Spectrochim Acta Part A Mol Biomol Spectrosc 167:41–49. 5 Oct 2016Google Scholar
  70. Rickerby D, Morrison M (2007) Report from the workshop on nanotechnologies for environmental remediation, JRC Ispra. Available at www.nanowerk.com/nanotechnology/reports/reportpdf/report101.pdf
  71. Saggioro EM, Oliveira AS, Pavesi T, Maia CG, Ferreira LFV, Moreira JC (2011) Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. Molecules 16: 10370–10386. doi: 10.3390/molecules161210370
  72. Schlekat CE, Decho AW, Chandler GT (1998) Sorption of cadmium to bacterial extracellular polymeric sediment coatings under estuarine conditions. Environ Toxicol Chem 17:1867–1874. doi: 10.1002/etc.5620170930 CrossRefGoogle Scholar
  73. Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14(12):5140–5147CrossRefGoogle Scholar
  74. Schwartz T, Jungfer C, Heißler S, Friedrich F, Faubel W, Obst U (2009) Combined use of molecular biology taxonomy, Raman spectrometry, and ESEM imaging to study natural biofilms grown on filter materials at waterworks. Chemosphere 77(2):249–257Google Scholar
  75. Sharma VK, Filip J, Zboril R, Varma RS (2015) Natural inorganic nanoparticles formation, fate, and toxicity in the environment. Chem Soc Rev 44:8410–8423CrossRefGoogle Scholar
  76. Stokes DJ (2001) Characterization if soft condensed matter and delicate materials using environmental scanning electron microscopy (ESEM). Adv Eng Mater 3(3):126–130CrossRefGoogle Scholar
  77. Stokes DJ, Donald AM (2000) In situ mechanical testing of dry and hydrated breadcrumb in the environmental scanning electron microscope (ESEM). J Mater Sci 35(3):599–607Google Scholar
  78. Tiede K, Tear SP, David H, Boxall AB (2009) Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices. Water Res 43(13):3335–3343. doi: 10.1016/j.watres.2009.04.045 CrossRefGoogle Scholar
  79. Üzüm C, Shahwan T, Eroğlu AE, Hallam KR, Scott TB, Lieberwirth I (2009) Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl Clay Sci 43:172–181Google Scholar
  80. Walker JT, Verran J, Boyd RD, Percival S (2001) Microscopy methods to investigate structure of potable water biofilms. Methods Enzymol 337(2001):243–255Google Scholar
  81. Wang C-B, Zhang W (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156CrossRefGoogle Scholar
  82. Watanabe K, Matsumoto Y, Kampling M, Al-Shamery K, Freund HJ (1999) Photochemistry of methane on Pd/Al2O3 model catalysts: control of photochemistry on transition metal surfaces. Angew Chem Int Ed 38(15)Google Scholar
  83. Wen MQ, Xiong T, Zang ZG, Wei W, Tang XT, Dong F (2016) Synthesis of MoS2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO). Opt Express 24(10):10205–10212. doi: 10.1364/OE.24.010205 CrossRefGoogle Scholar
  84. Wu X, Yang Q, Xu D, Zhong Y, Luo K, Li X, Chen H, Zeng G (2013) Simultaneous adsorption/reduction of bromate by nanoscale zerovalent iron supported on modified activated carbon. Ind Eng Chem Res 52:12574–12581CrossRefGoogle Scholar
  85. Wuertz S, Muller E, Spaeth R, Pfleiderer P, Flemming H-C (2000) Detection of heavy metals in bacterial biofilms and microbial flocs with the fluorescent complexing agent Newport Green. J Ind Microbiol Biotechnol 24:116–123. doi: 10.1038/sj.jim.2900784 CrossRefGoogle Scholar
  86. Yan W, Herzing AA, Kiely CJ, Zhang WX (2010a) Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. J Contam Hydrol 118(3–4):96–104CrossRefGoogle Scholar
  87. Yan W, Herzing AA, Li XQ, Kiely CJ, Zhang WX (2010b) Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity. Environ Sci Technol 44(11):4288–4294CrossRefGoogle Scholar
  88. Yan W, Vasic R, Frenkel AI, Koel BE (2012) Intraparticle reduction of arsenite (As(III)) by nanoscale zerovalent iron (nZVI) investigated with in situ x-ray absorption spectroscopy. Environ Sci Technol 46(13):7018–7026CrossRefGoogle Scholar
  89. Yuan GD, Theng BKG, Churchman GJ, Gates WP (2013) Clays and clay minerals for pollution control. In: Developments in clay science (Chapter 5), vol 5A. p 587Google Scholar
  90. Yunus IS, Harwin, Kurniawan A, Adityawarman D, Indarto A (2012) Nanotechnologies in water and air pollution treatment. Environ Technol Rev 1(1):136–148CrossRefGoogle Scholar
  91. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  92. Zhang F, He S, Zhang C, Peng Z (2015) Adsorption kinetics and thermodynamics of acid Bordeaux B from aqueous solution by graphene oxide/PAMAMs. Water Sci Technol 72(7):1217–1225. doi: 10.2166/wst.2015.328 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Elisabetta Carata
    • 1
  • Elisa Panzarini
    • 1
  • Luciana Dini
    • 1
    Email author
  1. 1.Di.S.Te.B.AUniversity of SalentoLecceItaly

Personalised recommendations