Nanomaterials for Water Remediation: Synthesis, Application and Environmental Fate

  • Antonella De LucaEmail author
  • Bernardí Bayarri Ferrer


World Health Organization estimates that almost 1 billion people in the world have no access to potable water and that 2.6 billion people lack access to adequate sanitation (World Health Organization (WHO), in Meeting the MDG drinking water and sanitation target: a mid-term assessment of progress/WHO/UNICEF Joint Monitoring Programme, 2004). The high level of quality required to make possible the utilization of reclaimed water to fill this lack of resource leads into the necessity of adapting conventional treatment schemes to more restrictive requirements. Nanotechnology processes could represent one of the most useful options for the achievement of this goal. National Nanotechnology Initiative (NNI) defined nanotechnology as “the understanding and control of matter at dimension between approximately 1 and 100 nanometers (nm), where unique phenomena enable novel application not feasible when working with bulk materials or even single atoms or molecules”. The knowledge achieved in this field offers the possibility of using novel material in the treatment of surface water, groundwater and wastewater especially for the removal of heavy metals, organic and inorganic solutes and microorganism. Due to the generally new ambit of research, the scientific community is actively involved in the development of new strategies and novel nanomaterials synthesis. Thousands of scientific articles related to nanotechnology applications in water sanitation have been published in the last decade. On the basis of their function, nanomaterials can be easily classified as: nanosorbents, nanocatalysts and redox active nanoparticles, nanostructured and reactive membranes, bioactive nanoparticles. Literature about current research on nanomaterials, methods of synthesis and characterization are reviewed in this chapter. Moreover, possible environmental impacts related with their application are also commented.


Nanomaterials Water treatment Synthesis methods Characterization techniques Environmental impact 


  1. Albuquerque Júnior EC, Méndez MOA, Coutinho A dos R, Franco TT (2008) Removal of cyanobacteria toxins from drinking water by adsorption on activated carbon fibers. Mater Res 11:371–380. doi: 10.1590/S1516-14392008000300023
  2. Allabashi R, Arkas M, Hörmann G, Tsiourvas D (2007) Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers. Water Res 41:476–486. doi: 10.1016/j.watres.2006.10.011 CrossRefGoogle Scholar
  3. Andersson M, Österlund L, Ljungström S, Palmqvist A (2002) Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J Phys Chem B 106:10674–10679. doi: 10.1021/jp025715y CrossRefGoogle Scholar
  4. Aschberger K, Micheletti C, Sokull-Klüttgen B, Christensen FM (2011) Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health–lessons learned from four case studies. Environ Int 37:1143–1156. doi: 10.1016/j.envint.2011.02.005 CrossRefGoogle Scholar
  5. Baalousha M, Lead J, Ju-Nam Y (2011) Natural colloids and manufactured nanoparticles in aquatic and terrestrial systems. Treatise Water Sci 81:89–129CrossRefGoogle Scholar
  6. Bagheri S, Muhd Julkapli N, Bee Abd Hamid S (2014) Titanium dioxide as a catalyst support in heterogeneous catalysis. Sci World J 2014:727496. doi: 10.1155/2014/727496 CrossRefGoogle Scholar
  7. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792. doi: 10.1126/science.1060928 CrossRefGoogle Scholar
  8. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164. doi: 10.1016/j.colsurfb.2005.11.026 CrossRefGoogle Scholar
  9. Bhattacharya D, Gupta RK (2008) Nanotechnology and potential of microorganismsGoogle Scholar
  10. Bhattacharyya A, Ali SW (2008) Characterization techniques for nanotechnology applications in textiles. Indian J Fibre Text Res 33:304–317Google Scholar
  11. Bina B, Pourzamani H, Rashidi A, Amin MM (2012) Ethylbenzene removal by carbon nanotubes from aqueous solution. J Environ Public Health 2012:817187. doi: 10.1155/2012/817187 CrossRefGoogle Scholar
  12. Biswas P, Wu C-Y (2005) Nanoparticles and the environment. J Air Waste Manage Assoc 55:708–746. doi: 10.1080/10473289.2005.10464656 CrossRefGoogle Scholar
  13. Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465. doi: 10.1016/j.jhazmat.2010.11.029 CrossRefGoogle Scholar
  14. Bottino A, Capannelli G, Comite A (2002) Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination 146:35–40. doi: 10.1016/S0011-9164(02)00469-1 CrossRefGoogle Scholar
  15. Breck DW (1974) Zeolite molecular sieves: structureGoogle Scholar
  16. Brunner TJ, Wick P, Manser P et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381. doi: 10.1021/es052069i CrossRefGoogle Scholar
  17. Burda C, Lou Y, Chen X et al (2003) Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 3:1049–1051. doi: 10.1021/nl034332o CrossRefGoogle Scholar
  18. Chen J-P, Chiang Y (2010) Bioactive electrospun silver nanoparticles-containing polyurethane nanofibers as wound dressings. J Nanosci Nanotechnol 10:7560–7564. doi: 10.1166/jnn.2010.2829 CrossRefGoogle Scholar
  19. Chen H, He J (2008) Facile synthesis of monodisperse manganese oxide nanostructures and their application in water treatment. J Phys Chem C 112:17540–17545. doi: 10.1021/jp806160g CrossRefGoogle Scholar
  20. Chen X, Feng X, Liu J et al (1999) Mercury separation and immobilization using self-assembled monolayers on mesoporous supports (SAMMS). Sep Sci Technol 34:1121–1132. doi: 10.1080/01496399908951084 CrossRefGoogle Scholar
  21. Chen X, Lam KF, Yeung KL (2011) Selective removal of chromium from different aqueous systems using magnetic MCM-41 nanosorbents. Chem Eng J 172:728–734. doi: 10.1016/j.cej.2011.06.042 CrossRefGoogle Scholar
  22. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679. doi: 10.1021/j100102a038 CrossRefGoogle Scholar
  23. Choi H, Antoniou MG, Pelaez M et al (2007a) Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. Environ Sci Technol 41:7530–7535. doi: 10.1021/es0709122 CrossRefGoogle Scholar
  24. Choi H, Stathatos E, Dionysiou DD (2007b) Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination 202:199–206. doi: 10.1016/j.desal.2005.12.055 CrossRefGoogle Scholar
  25. Choi O, Deng KK, Kim N-J et al (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074. doi: 10.1016/j.watres.2008.02.021 CrossRefGoogle Scholar
  26. Chouyyok W, Wiacek RJ, Pattamakomsan K et al (2010) Phosphate removal by anion binding on functionalized nanoporous sorbents. Environ Sci Technol 44:3073–3078. doi: 10.1021/es100787m CrossRefGoogle Scholar
  27. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608. doi: 10.1021/nl3012853 CrossRefGoogle Scholar
  28. Cong Y, Zhang J, Chen F, Anpo M (2007) Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C 111:6976–6982. doi: 10.1021/jp0685030 CrossRefGoogle Scholar
  29. Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B 112:1427–1434. doi: 10.1021/jp709845u CrossRefGoogle Scholar
  30. Cravillon J, Münzer S, Lohmeier S-J et al (2009) Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate frameworkGoogle Scholar
  31. Cui D, Tian F, Ozkan CS et al (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85. doi: 10.1016/j.toxlet.2004.08.015 CrossRefGoogle Scholar
  32. Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998. doi: 10.1021/es103302t CrossRefGoogle Scholar
  33. de Hartog JJ, Hoek G, Peters A et al (2003) Effects of fine and ultrafine particles on cardiorespiratory symptoms in elderly subjects with coronary heart disease: the ULTRA study. Am J Epidemiol 157:613–623CrossRefGoogle Scholar
  34. David M. Dotzauer, Jinhua Dai, Lei Sun A, Bruening ML (2006) Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supportsGoogle Scholar
  35. Eriksson P (1988) Nanofiltration extends the range of membrane filtration. Environ Prog 7:58–62. doi: 10.1002/ep.3300070116 CrossRefGoogle Scholar
  36. Esteban-Cubillo A, Pecharromán C, Aguilar E et al (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci 41:5208–5212. doi: 10.1007/s10853-006-0432-x CrossRefGoogle Scholar
  37. Feng X (1997) Functionalized monolayers on ordered mesoporous supports. Science 276(80–):923–926. doi: 10.1126/science.276.5314.923
  38. Feng X, Liu J, Fryxell GE (1997) Self-assembled mercaptan on mesoporous silica (SAMMS) technology of mercury removal and stabilization. Richland, WACrossRefGoogle Scholar
  39. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36Google Scholar
  40. Fryxell GE, Mattigod SV, Lin Y et al (2007) Design and synthesis of self-assembled monolayers on mesoporous supports (SAMMS): the importance of ligand posture in functional nanomaterials. J Mater Chem 17:2863. doi: 10.1039/b702422c CrossRefGoogle Scholar
  41. Fu J, Ji M, Wang Z et al (2006) A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst. J Hazard Mater 131:238–242. doi: 10.1016/j.jhazmat.2005.09.039 CrossRefGoogle Scholar
  42. Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205. doi: 10.1016/j.jhazmat.2013.12.062 CrossRefGoogle Scholar
  43. Giasuddin ABM, Kanel SR, Choi H (2007) Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 41:2022–2027. doi: 10.1021/es0616534 CrossRefGoogle Scholar
  44. Gillham RW, O’Hannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32:958–967. doi: 10.1111/j.1745-6584.1994.tb00935.x CrossRefGoogle Scholar
  45. Gin DL, Lu X, Nemade PR et al (2006) Recent advances in the design of polymerizable lyotropic liquid-crystal assemblies for heterogeneous catalysis and selective separations. Adv Funct Mater 16:865–878. doi: 10.1002/adfm.200500280 CrossRefGoogle Scholar
  46. Gopal K, Tripathy SS, Bersillon JL, Dubey SP (2007) Chlorination byproducts, their toxicodynamics and removal from drinking water. J Hazard Mater 140:1–6. doi: 10.1016/j.jhazmat.2006.10.063 CrossRefGoogle Scholar
  47. K. Goyal A, S. Johal E, Rath G (2011) Nanotechnology for water treatment. Curr Nanosci 7:640–654. doi: 10.2174/157341311796196772
  48. Gu B, Phelps TJ, Liang L et al (1999) Biogeochemical dynamics in zero-valent iron columns: implications for permeable reactive barriers. Environ Sci Technol 33:2170–2177. doi: 10.1021/es981077e CrossRefGoogle Scholar
  49. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chinese Sci Bull 56:1639–1657. doi: 10.1007/s11434-011-4476-1 CrossRefGoogle Scholar
  50. Gurr J-R, Wang ASS, Chen C-H, Jan K-Y (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73. doi: 10.1016/j.tox.2005.05.007 CrossRefGoogle Scholar
  51. Han H, Bai R (2009) Buoyant photocatalyst with greatly enhanced visible-light activity prepared through a low temperature hydrothermal method. Ind Eng Chem Res 48:2891–2898. doi: 10.1021/ie801362a CrossRefGoogle Scholar
  52. Henmi M, Nakatsuji K, Ichikawa T et al (2012) Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions. Adv Mater 24:2238–2241. doi: 10.1002/adma.201200108 CrossRefGoogle Scholar
  53. Hoag GE, Collins JB, Holcomb JL et al (2009) Degradation of bromothymol blue by “greener” nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671. doi: 10.1039/b909148c CrossRefGoogle Scholar
  54. Holt JK, Park HG, Wang Y et al (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037. doi: 10.1126/science.1126298 CrossRefGoogle Scholar
  55. Hong T-K, Tripathy N, Son H-J et al (2013) A comprehensive in vitro and in vivo study of ZnO nanoparticles toxicity. J Mater Chem B 1:2985. doi: 10.1039/c3tb20251h CrossRefGoogle Scholar
  56. Hornyak GL, Dutta J, Tibbals HF, Rao A (2008) Introduction to nanoscience. CRC Press, Boca RatonGoogle Scholar
  57. Hu J, Chen G, Lo IMC (2005) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536. doi: 10.1016/j.watres.2005.05.051 CrossRefGoogle Scholar
  58. Hu J, Tong Z, Hu Z et al (2012) Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes. J Colloid Interface Sci 377:355–361. doi: 10.1016/j.jcis.2012.03.064 CrossRefGoogle Scholar
  59. Hussain SM, Hess KL, Gearhart JM et al (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983. doi: 10.1016/j.tiv.2005.06.034 CrossRefGoogle Scholar
  60. Hyung H, Kim J-H (2008) Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ Sci Technol 42:4416–4421. doi: 10.1021/es702916h CrossRefGoogle Scholar
  61. IARC (2010) IARC monographs on the evaluation of carcinogenic risks to humans, vol 93, Carbon Black, Titanium Dioxide, and Talc. IARC Press, LyonGoogle Scholar
  62. Ibald-Mulli A, Wichmann H-E, Kreyling W, Peters A (2002) Epidemiological evidence on health effects of ultrafine particles. J Aerosol Med 15:189–201. doi: 10.1089/089426802320282310 CrossRefGoogle Scholar
  63. Ichikawa T, Yoshio M, Hamasaki A et al (2011) 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals. J Am Chem Soc 133:2163–2169. doi: 10.1021/ja106707z CrossRefGoogle Scholar
  64. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  65. Ireland JC, Klostermann P, Rice EW, Clark RM (1993) Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Appl Environ Microbiol 59:1668–1670Google Scholar
  66. Ismail AA, Mazyck DW (2008) Impact of heat treatment and composition of ZnO–TiO2 nanoparticles for photocatalytic oxidation of an Azo dye. Ind Eng Chem Res 47:1483–1487. doi: 10.1021/ie071255p CrossRefGoogle Scholar
  67. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2699–2711. doi: 10.1080/10934520600966177 CrossRefGoogle Scholar
  68. Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383. doi: 10.1021/es048729l CrossRefGoogle Scholar
  69. Jiang Z, Lv L, Zhang W et al (2011) Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Res 45:2191–2198. doi: 10.1016/j.watres.2011.01.005 CrossRefGoogle Scholar
  70. Joo SH, Feitz AJ, Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol 38:2242–2247. doi: 10.1021/es035157g CrossRefGoogle Scholar
  71. Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414. doi: 10.1016/j.scitotenv.2008.06.042 CrossRefGoogle Scholar
  72. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298. doi: 10.1021/es048991u CrossRefGoogle Scholar
  73. Kato T (2002) Self-assembly of phase-segregated liquid crystal structures. Science 295:2414–2418. doi: 10.1126/science.1070967 CrossRefGoogle Scholar
  74. Kato T (2010) From nanostructured liquid crystals to polymer-based electrolytes. Angew Chem Int Ed Engl 49:7847–7848. doi: 10.1002/anie.201000707 CrossRefGoogle Scholar
  75. Kelly SD, Kemner KM, Fryxell GE et al (2001) X-ray-absorption fine-structure spectroscopy study of the interactions between contaminant tetrahedral anions and self-assembled monolayers on mesoporous supports. J Phys Chem B 105:6337–6346. doi: 10.1021/jp0045890 CrossRefGoogle Scholar
  76. Kim SH, Kwak S-Y, Sohn B-H, Park TH (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Memb Sci 211:157–165. doi: 10.1016/S0376-7388(02)00418-0 CrossRefGoogle Scholar
  77. Kim S, Hwang S-J, Choi W (2005) Visible light active platinum-ion-doped TiO2 photocatalyst. J Phys Chem B 109:24260–24267. doi: 10.1021/jp055278y CrossRefGoogle Scholar
  78. Kim H, Hong H-J, Jung J et al (2010) Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J Hazard Mater 176:1038–1043. doi: 10.1016/j.jhazmat.2009.11.145 CrossRefGoogle Scholar
  79. Kim E-S, Hwang G, Gamal El-Din M, Liu Y (2012) Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J Memb Sci 394–395:37–48. doi: 10.1016/j.memsci.2011.11.041 CrossRefGoogle Scholar
  80. Krishna V, Pumprueg S, Lee S-H et al (2005) Photocatalytic disinfection with titanium dioxide coated multi-wall carbon nanotubes. Process Saf Environ Prot 83:393–397. doi: 10.1205/psep.04387 CrossRefGoogle Scholar
  81. Lam C-W, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134. doi: 10.1093/toxsci/kfg243 CrossRefGoogle Scholar
  82. Landau MV, Vradman L, Valtchev V et al (2003) Hydrocracking of heavy vacuum gas oil with a Pt/H-beta-Al2O3 catalyst: effect of zeolite crystal size in the nanoscale range. Ind Eng Chem Res 42:2773–2782. doi: 10.1021/ie020899o CrossRefGoogle Scholar
  83. Lee MS, Hong S-S, Mohseni M (2005) Synthesis of photocatalytic nanosized TiO2–Ag particles with sol–gel method using reduction agent. J Mol Catal A: Chem 242:135–140. doi: 10.1016/j.molcata.2005.07.038 CrossRefGoogle Scholar
  84. Lens P, Virkutyte J, Jegatheesan V et al (2013) Nanotechnology for water and wastewater treatment. IWA PublishingGoogle Scholar
  85. Leonard P, Hearty S, Brennan J et al (2003) Advances in biosensors for detection of pathogens in food and water. Enzyme Microb Technol 32:3–13. doi: 10.1016/S0141-0229(02)00232-6 CrossRefGoogle Scholar
  86. Li FB, Li XZ (2002) The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere 48:1103–1111. doi: 10.1016/S0045-6535(02)00201-1 CrossRefGoogle Scholar
  87. Li X, Elliott DW, Zhang W (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31:111–122. doi: 10.1080/10408430601057611 CrossRefGoogle Scholar
  88. Liao D, Creason J, Shy C et al (1999) Daily variation of particulate air pollution and poor cardiac autonomic control in the elderly. Environ Health Perspect 107:521–525CrossRefGoogle Scholar
  89. Lien H-L, Zhang W (1999) Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng 125:1042–1047. doi: 10.1061/(ASCE)0733-9372(1999)125:11(1042)
  90. Lin Y, Fryxell GE, Wu H, Engelhard M (2001) Selective sorption of cesium using self-assembled monolayers on mesoporous supports. Environ Sci Technol 35:3962–3966. doi: 10.1021/es010710k CrossRefGoogle Scholar
  91. Lin D, Tian X, Wu F, Xing B (2010) Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39:1896. doi: 10.2134/jeq2009.0423 CrossRefGoogle Scholar
  92. Ling X, Li J, Zhu W et al (2012) Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene. Chemosphere 87:655–660. doi: 10.1016/j.chemosphere.2012.02.002 CrossRefGoogle Scholar
  93. Liu Z, Zhang F-S (2010) Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCBs. Bioresour Technol 101:2562–2564. doi: 10.1016/j.biortech.2009.11.074 CrossRefGoogle Scholar
  94. Liu J, Fryxell GE, Mattigod SV et al (1998) Self-assembled monolayers on mesoporous support (SAMMS) technology for contaminant removal and stabilization. Richland, WACrossRefGoogle Scholar
  95. Liu Y, Chen X, Li J, Burda C (2005) Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere 61:11–18. doi: 10.1016/j.chemosphere.2005.03.069 CrossRefGoogle Scholar
  96. Liu J, Zhao Z, Jiang G (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954. doi: 10.1021/es800924c CrossRefGoogle Scholar
  97. López-Muñoz M-J, van Grieken R, Aguado J, Marugán J (2005) Role of the support on the activity of silica-supported TiO2 photocatalysts: structure of the TiO2/SBA-15 photocatalysts. Catal Today 101:307–314. doi: 10.1016/j.cattod.2005.03.017 CrossRefGoogle Scholar
  98. López-Serrano A, Olivas RM, Landaluze JS, Cámara C (2014) Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods 6:38–56. doi: 10.1039/C3AY40517F CrossRefGoogle Scholar
  99. Lu C, Liu C (2006) Removal of nickel(II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81:1932–1940. doi: 10.1002/jctb.1626 CrossRefGoogle Scholar
  100. Lu Y, Fan H, Stump A et al (1999) Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398:223–226. doi: 10.1038/18410 CrossRefGoogle Scholar
  101. Lu C, Chung Y-L, Chang K-F (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39:1183–1189. doi: 10.1016/j.watres.2004.12.033 CrossRefGoogle Scholar
  102. Ma Y, Qiu J, Cao Y et al (2001) Photocatalytic activity of TiO2 films grown on different substrates. Chemosphere 44:1087–1092. doi: 10.1016/S0045-6535(00)00360-X CrossRefGoogle Scholar
  103. Majewski PJ (2007) Removal of organic matter in water by functionalised self-assembled monolayers on silica. Sep Purif Technol 57:283–288. doi: 10.1016/j.seppur.2007.04.008 CrossRefGoogle Scholar
  104. Maynard AD (2007) Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg 51:1–12. doi: 10.1093/annhyg/mel071 Google Scholar
  105. Miller SA, Young VY, Martin CR (2001) Electroosmotic flow in template-prepared carbon nanotube membranes. J Am Chem Soc 123:12335–12342. doi: 10.1021/ja011926p CrossRefGoogle Scholar
  106. Mohsen MS, Jaber JO, Afonso MD (2003) Desalination of brackish water by nanofiltration and reverse osmosis. Desalination 157:167. doi: 10.1016/S0011-9164(03)00397-7 CrossRefGoogle Scholar
  107. Monteiro-Riviere NA, Nemanich RJ, Inman AO et al (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384. doi: 10.1016/j.toxlet.2004.11.004 CrossRefGoogle Scholar
  108. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976. doi: 10.1016/j.envint.2006.06.014 CrossRefGoogle Scholar
  109. Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. doi: 10.1088/0957-4484/16/10/059 CrossRefGoogle Scholar
  110. Mukhopadhyay S (2011) Nanoscale multifunctional materials: science and applications. Wiley, New YorkGoogle Scholar
  111. Muller J, Huaux F, Moreau N et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231. doi: 10.1016/j.taap.2005.01.008 CrossRefGoogle Scholar
  112. Nahar MS, Hasegawa K, Kagaya S (2006) Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles. Chemosphere 65:1976–1982. doi: 10.1016/j.chemosphere.2006.07.002 CrossRefGoogle Scholar
  113. Nasr C, Vinodgopal K, Fisher L et al (1996) Environmental photochemistry on semiconductor surfaces. Visible light induced degradation of a textile diazo dye, naphthol blue black, on TiO2 nanoparticles. J Phys Chem 100:8436–8442. doi: 10.1021/jp953556v CrossRefGoogle Scholar
  114. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi: 10.1126/science.1114397 CrossRefGoogle Scholar
  115. Nune SK, Thallapally PK, Dohnalkova A et al (2010) Synthesis and properties of nano zeolitic imidazolate frameworks. Chem Commun (Camb) 46:4878–4880. doi: 10.1039/c002088e CrossRefGoogle Scholar
  116. Oberdörster G, Stone V, Donaldson K (2009) Toxicology of nanoparticles: a historical perspectiveGoogle Scholar
  117. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720. doi: 10.1128/AEM.02218-06 CrossRefGoogle Scholar
  118. Pastoriza-Santos I, Koktysh DS, Mamedov AA et al (2000) One-pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly. Langmuir 16:2731–2735. doi: 10.1021/la991212g CrossRefGoogle Scholar
  119. Paul S, Choudhury A (2013) Investigation of the optical property and photocatalytic activity of mixed phase nanocrystalline titania. Appl Nanosci 4:839–847. doi: 10.1007/s13204-013-0264-3 CrossRefGoogle Scholar
  120. Pekkanen J, Timonen KL, Ruuskanen J et al (1997) Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environ Res 74:24–33. doi: 10.1006/enrs.1997.3750 CrossRefGoogle Scholar
  121. Pelaez M, de la Cruz AA, Stathatos E et al (2009) Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water. Catal Today 144:19–25. doi: 10.1016/j.cattod.2008.12.022 CrossRefGoogle Scholar
  122. Peltier S, Cotte M, Gatel D et al (2003) Nanofiltration: improvements of water quality in a large distribution system. Water Sci Technol water supply 3:193–200Google Scholar
  123. Petcharoen K, Sirivat A (2012) Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater Sci Eng, B 177:421–427. doi: 10.1016/j.mseb.2012.01.003 CrossRefGoogle Scholar
  124. Peters R, ten Dam G, Bouwmeester H et al (2011) Identification and characterization of organic nanoparticles in food. TrAC Trends Anal Chem 30:100–112. doi: 10.1016/j.trac.2010.10.004 CrossRefGoogle Scholar
  125. Poland CA, Duffin R, Kinloch I et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428. doi: 10.1038/nnano.2008.111 CrossRefGoogle Scholar
  126. Popov V (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Reports 43:61–102. doi: 10.1016/j.mser.2003.10.001 CrossRefGoogle Scholar
  127. Pugazhenthiran N, Anandan S, Kathiravan G et al (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanoparticle Res 11:1811–1815CrossRefGoogle Scholar
  128. Qin J-J, Oo MH, Kekre KA (2007) Nanofiltration for recovering wastewater from a specific dyeing facility. Sep Purif Technol 56:199–203. doi: 10.1016/j.seppur.2007.02.002 CrossRefGoogle Scholar
  129. Rao KVS, Rachel A, Subrahmanyam M, Boule P (2003) Immobilization of TiO2 on pumice stone for the photocatalytic degradation of dyes and dye industry pollutants. Appl Catal B Environ 46:77–85. doi: 10.1016/S0926-3373(03)00199-1 CrossRefGoogle Scholar
  130. Rao G, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231. doi: 10.1016/j.seppur.2006.12.006 CrossRefGoogle Scholar
  131. Rook JJ (1974) Formation of haloforms during chlorination of natural waters. Water Treat Exam 23:234–243Google Scholar
  132. Sakai N, Kamikawa Y, Nishii M et al (2006) Dendritic folate rosettes as ion channels in lipid bilayers. J Am Chem Soc 128:2218–2219. doi: 10.1021/ja058157k CrossRefGoogle Scholar
  133. Samet JM, Dominici F, Curriero FC et al (2000) Fine particulate air pollution and mortality in 20 US cities, 1987–1994. N Engl J Med 343:1742–1749CrossRefGoogle Scholar
  134. Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanoparticle Res 7:331–342. doi: 10.1007/s11051-005-7523-5 CrossRefGoogle Scholar
  135. Sayes CM, Wahi R, Kurian PA et al (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185. doi: 10.1093/toxsci/kfj197 CrossRefGoogle Scholar
  136. Seaton A, Godden D, MacNee W, Donaldson K (1995) Particulate air pollution and acute health effects. Lancet 345:176–178. doi: 10.1016/S0140-6736(95)90173-6 CrossRefGoogle Scholar
  137. Sharifi S, Behzadi S, Laurent S et al (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343. doi: 10.1039/C1CS15188F CrossRefGoogle Scholar
  138. Shih Y, Hsu C, Su Y (2011) Reduction of hexachlorobenzene by nanoscale zero-valent iron: kinetics, pH effect, and degradation mechanism. Sep Purif Technol 76:268–274. doi: 10.1016/j.seppur.2010.10.015 CrossRefGoogle Scholar
  139. Shvedova AA, Castranova V, Kisin ER et al (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66:1909–1926. doi: 10.1080/713853956 CrossRefGoogle Scholar
  140. Simate GS, Iyuke SE, Ndlovu S et al (2012) Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. Environ Int 39:38–49. doi: 10.1016/j.envint.2011.09.006 CrossRefGoogle Scholar
  141. Singh T, Singhal R (2013) Reuse of a waste adsorbent poly(AAc/AM/SH)-Cu superabsorbent hydrogel, for the potential phosphate ion removal from waste water: matrix effects, adsorption kinetics, and thermodynamic studies. J Appl Polym Sci 129:3126–3139. doi: 10.1002/app.39018 CrossRefGoogle Scholar
  142. Siqueira JR, Crespilho FN, Zucolotto V, Oliveira ON (2007) Bifunctional electroactive nanostructured membranes. Electrochem Commun 9:2676–2680. doi: 10.1016/j.elecom.2007.08.009 CrossRefGoogle Scholar
  143. Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25:1632–1637. doi: 10.1002/marc.200400323 CrossRefGoogle Scholar
  144. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182. doi: 10.1016/j.jcis.2004.02.012 CrossRefGoogle Scholar
  145. Song W, Justice RE, Jones CA et al (2004) Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5. Langmuir 20:8301–8306. doi: 10.1021/la049516c CrossRefGoogle Scholar
  146. Song W, Li G, Grassian VH, Larsen SC (2005) Development of Improved materials for environmental applications: nanocrystalline NaY zeolites. Environ Sci Technol 39:1214–1220. doi: 10.1021/es049194z CrossRefGoogle Scholar
  147. Sousa FL, Daniel-da-Silva AL, Silva NJO, Trindade T (2015) Bionanocomposites for magnetic removal of water pollutants. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites SE—9. Springer India, pp 279–310Google Scholar
  148. Spadaro JA, Berger TJ, Barranco SD et al (1974) antibacterial effects of silver electrodes with weak direct current. Antimicrob Agents Chemother 6:637–642. doi: 10.1128/AAC.6.5.637 CrossRefGoogle Scholar
  149. Srivastava M, Chaubey S, Ojha AK (2009) Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol–gel and hydrothermal methods. Mater Chem Phys 118:174–180. doi: 10.1016/j.matchemphys.2009.07.023 CrossRefGoogle Scholar
  150. Stumm W, Morgan JJ (2012) Aquatic chemistry: chemical equilibria and rates in natural watersGoogle Scholar
  151. Su J, Guo H (2011) Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field. ACS Nano 5:351–359. doi: 10.1021/nn1014616 CrossRefGoogle Scholar
  152. Su F, Lu C (2007) Adsorption kinetics, thermodynamics and desorption of natural dissolved organic matter by multiwalled carbon nanotubes. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1543–1552. doi: 10.1080/10934520701513381 CrossRefGoogle Scholar
  153. Suffet IH (1995) Advances in taste-and-odor treatment and controlGoogle Scholar
  154. Sutherland K (2008) Developments in filtration: what is nanofiltration? Filtr Sep 45:32–35. doi: 10.1016/S0015-1882(08)70298-2
  155. Szewzyk U, Szewzyk R, Manz W, Schleifer KH (2000) Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127. doi: 10.1146/annurev.micro.54.1.81 CrossRefGoogle Scholar
  156. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunitiesGoogle Scholar
  157. Tiede K, Hassellöv M, Breitbarth E et al (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A 1216:503–509. doi: 10.1016/j.chroma.2008.09.008 CrossRefGoogle Scholar
  158. Tiwari DK, Behari J, Sen P (2008) Application of nanoparticles in waste water treatment. World Appl Sci J 3:417–433Google Scholar
  159. Tran CL, Buchanan D, Cullen RT et al (2000) Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol 12:1113–1126CrossRefGoogle Scholar
  160. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48. doi: 10.1016/S1748-0132(06)70048-2 CrossRefGoogle Scholar
  161. UNEP (2007) GEO year book 2007—an overview of our changing environment. Nairobi, KenyaGoogle Scholar
  162. US. EPA. (2008) Nanotechnology for Site Remediation Fact Sheet. Solid waste and emergency responseGoogle Scholar
  163. Van der Bruggen B, Vandecasteele C (2002) Distillation vs. membrane filtration: overview of process evolutions in seawater desalination. Desalination 143:207–218. doi: 10.1016/S0011-9164(02)00259-X CrossRefGoogle Scholar
  164. Van der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122:435–445. doi: 10.1016/S0269-7491(02)00308-1 CrossRefGoogle Scholar
  165. Walha K, Ben Amar R, Firdaous L et al (2007) Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison. Desalination 207:95–106. doi: 10.1016/j.desal.2006.03.583 CrossRefGoogle Scholar
  166. Wang P, Lo IMC (2009) Synthesis of mesoporous magnetic gamma-Fe2O3 and its application to Cr(VI) removal from contaminated water. Water Res 43:3727–3734. doi: 10.1016/j.watres.2009.05.041 CrossRefGoogle Scholar
  167. Wang W, Zhou M, Mao Q et al (2010) Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst. Catal Commun 11:937–941. doi: 10.1016/j.catcom.2010.04.004 CrossRefGoogle Scholar
  168. Warheit DB, Laurence BR, Reed KL et al (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125. doi: 10.1093/toxsci/kfg228 CrossRefGoogle Scholar
  169. Warheit DB, Webb TR, Sayes CM et al (2006) Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91:227–236. doi: 10.1093/toxsci/kfj140 CrossRefGoogle Scholar
  170. Weinberg H, Galyean A, Leopold M (2011) Evaluating engineered nanoparticles in natural waters. TrAC Trends Anal Chem 30:72–83. doi: 10.1016/j.trac.2010.09.006 CrossRefGoogle Scholar
  171. White BR, Stackhouse BT, Holcombe JA (2009) Magnetic gamma-Fe(2)O(3) nanoparticles coated with poly-l-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). J Hazard Mater 161:848–853. doi: 10.1016/j.jhazmat.2008.04.105 CrossRefGoogle Scholar
  172. Wiesner MR, Lowry GV, Alvarez P et al (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345CrossRefGoogle Scholar
  173. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater 21:2233–2239. doi: 10.1002/adma.200802738 CrossRefGoogle Scholar
  174. World Health Organization (WHO) (2004) Meeting the MDG drinking water and sanitation target : a mid-term assessment of progress/WHO/UNICEF Joint Monitoring ProgrammeGoogle Scholar
  175. Wu L, Shamsuzzoha M, Ritchie SMC (2005) Preparation of cellulose acetate supported zero-valent iron nanoparticles for the dechlorination of trichloroethylene in water. J Nanoparticle Res 7:469–476. doi: 10.1007/s11051-005-4271-5 CrossRefGoogle Scholar
  176. Wu J, Zheng Y, Song W et al (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771. doi: 10.1016/j.carbpol.2013.10.093 CrossRefGoogle Scholar
  177. Xu C, Li B, Du H et al (2008) Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method. J Power Sources 180:664–670. doi: 10.1016/j.jpowsour.2008.02.029 CrossRefGoogle Scholar
  178. Yan H, Gong A, He H et al (2006) Adsorption of microcystins by carbon nanotubes. Chemosphere 62:142–148. doi: 10.1016/j.chemosphere.2005.03.075 CrossRefGoogle Scholar
  179. Yan W, Herzing AA, Li X et al (2010) Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity. Environ Sci Technol 44:4288–4294. doi: 10.1021/es100051q CrossRefGoogle Scholar
  180. Yantasee W, Warner CL, Sangvanich T et al (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41:5114–5119. doi: 10.1021/es0705238 CrossRefGoogle Scholar
  181. Zhang X, Du AJ, Lee P et al (2008a) TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water. J Memb Sci 313:44–51. doi: 10.1016/j.memsci.2007.12.045 CrossRefGoogle Scholar
  182. Zhang Y, Chen Y, Westerhoff P et al (2008b) Stability of commercial metal oxide nanoparticles in water. Water Res 42:2204–2212. doi: 10.1016/j.watres.2007.11.036 CrossRefGoogle Scholar
  183. Zhang K, Kemp KC, Chandra V (2012) Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment. Mater Lett 81:127–130. doi: 10.1016/j.matlet.2012.05.002 CrossRefGoogle Scholar
  184. Zhao G, Stevens SE (1998) Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11:27–32. doi: 10.1023/A:1009253223055 CrossRefGoogle Scholar
  185. Zhou M, Nemade PR, Lu X et al (2007a) New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly. J Am Chem Soc 129:9574–9575. doi: 10.1021/ja073067w CrossRefGoogle Scholar
  186. Zhou Q, Xiao J, Wang W (2007b) Comparison of multiwalled carbon nanotubes and a conventional absorbent on the enrichment of sulfonylurea herbicides in water samples. Anal Sci 23:189–192. doi: 10.2116/analsci.23.189 CrossRefGoogle Scholar
  187. Zhu J, Liu S, Palchik O et al (2000) Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir 16:6396–6399. doi: 10.1021/la991507u CrossRefGoogle Scholar
  188. Zhu H, Jia Y, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172:1591–1596. doi: 10.1016/j.jhazmat.2009.08.031 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentUniversity of BarcelonaBarcelonaSpain
  2. 2.BadalonaSpain

Personalised recommendations