Advertisement

Presence, Behavior and Fate of Engineered Nanomaterials in Municipal Solid Waste Landfills

  • Ceyda Senem Uyguner-Demirel
  • Burak DemirelEmail author
  • Nadim K. Copty
  • Turgut T. Onay
Chapter
  • 944 Downloads

Abstract

As a result of extensive use of engineered nanomaterials (ENMs) in consumer products, significant amounts of ENMs are eventually released to the environment and find their way to wastewater treatment plants, incineration plants and landfills. Recent concerns about the potential impacts of these materials on the environment and human health, have diverted researchers’ interest to investigate the behaviour of inorganic, metallic/metal oxide ENMs in conventional activated sludge wastewater treatment and anaerobic sewage sludge digestion systems. However, related information about the presence and fate of such ENMs during waste stabilization in municipal solid waste (MSW) landfills which remains a widely used method of solid waste management, is scarce in literature. Therefore, in this paper, recent information about the detection methods and fate of the most commonly used metal oxide ENMs such as TiO2, ZnO, Ag and SiO2 in MSW landfills was revealed. The complexity of the factors influencing ENMs retention and transport mechanisms was discussed. Future research needs relating to the fate of ENMs in MSW were also identified.

Keywords

Engineered nanomaterials Municipal solid waste Landfill Analytic techniques Fate and transport Numerical modeling 

Notes

Acknowledgements

The authors express their gratitude to the Scientific and Technological Research Council of Turkey (TÜBİTAK) for their support for this work through project 112Y322.

References

  1. Aljaradin M, Persson KM (2012) Environmental impact of municipal solid waste landfills in semi-arid climates—case study—Jordan. Open Waste Manag J 5:28–39CrossRefGoogle Scholar
  2. Al-Wabel MI, Al Yehya WS, Al-Farraj AS, El-Maghraby SE (2011) Characteristics of landfill leachates and bio-solids of municipal solid waste (MSW) in Riyadh City, Saudi Arabia. J Saudi Soc Agric Sci 10:65–70Google Scholar
  3. Asmatulu E, Twomey J, Overcash M (2012) Life cycle and nano-products: end-of-life assessment. J Nanopart Res 14:720–727CrossRefGoogle Scholar
  4. Boldrin A, Hansen SF, Baun A, Hartmann NIB, Astrup TF (2014) Environmental exposure assessment framework for nanoparticles in solid waste. J Nanopart Res 16:2394–2412CrossRefGoogle Scholar
  5. Bolyard SC, Reinhart DR, Santra S (2013) Behavior of engineered nanoparticles in landfill leachate. Environ Sci Technol 47:8114–8122Google Scholar
  6. Bradford SA, Torkzaban S (2008) Colloid transport and retention on unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models. Vadose Zone J 7:667–681CrossRefGoogle Scholar
  7. Bradford SA, Simunek J, Bettahar M, van Genuchten MT, Yates SR (2003) Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ Sci Technol 37:2242–2250CrossRefGoogle Scholar
  8. Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595CrossRefGoogle Scholar
  9. DiSalvo RM, Gary PE, McCollum GR (2008) Evaluating the impact of nanoparticles on wastewater collection and treatment systems in Virginia. Water jam 2008. Virginia Beach, Virginia, 7–11 Sept 2008Google Scholar
  10. Dulger M, Sakallioglu T, Temizel I, Demirel B, Copty NK, Onay TT, Uyguner-Demirel CS, Karanfil T (2016) Leaching potential of nano-scale titanium dioxide in fresh municipal solid waste. Chemosphere 144:1567–1572CrossRefGoogle Scholar
  11. Durenkamp M, Pawlett M, Ritz K, Harris JA, Neal AL, McGrath SP (2016) Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function. Environ Pollut 211:399–405CrossRefGoogle Scholar
  12. Elimelech M, Gregory J, Jia X, Williams RA (1998) Particle deposition and aggregation measurement, modeling, and simulation. Butterworth-Heinemann, Woburn, MAGoogle Scholar
  13. Ersenkal DA, Ziylan A, Ince NH, Acar HY, Demirer M, Copty NK (2011) Impact of dilution on the transport of poly (acrylic acid) supported magnetite nanoparticles in porous media. J Contam Hydrol 126:248–257Google Scholar
  14. Erses S, Onay TT (2003) In situ heavy metal attenuation in landfills under methanogenic conditions. J Hazard Mater 99:159–175CrossRefGoogle Scholar
  15. Erses AS, Onay TT, Yenigun O (2008) Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresour Technol 99:5418–5426CrossRefGoogle Scholar
  16. Fabricius AL, Duester L, Meermann B, Ternes TA (2014) ICP-MS-based characterization of inorganic nanoparticles—sample preparation and off-line fractionation strategies. Anal Bioanal Chem 406:467–479CrossRefGoogle Scholar
  17. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155CrossRefGoogle Scholar
  18. Han X, Geller B, Moniz K, Das P, Chippindale AK, Walker VK (2014) Monitoring the developmental impact of copper and nanoparticle exposure in Drosophila and their microbiomes. Sci Total Environ 487:822–829CrossRefGoogle Scholar
  19. Hennebert P, Avellan A, Yan J, Aguerre-Chariol O (2013) Experimental evidence of colloids and nanoparticles presence from 25 waste leachates. Waste Manag 33:1870–1881CrossRefGoogle Scholar
  20. Holder AL, Vegerano EP, Zhou S, Marr LC (2013) Nanomaterial disposal by incineration. Environ Sci Process Impacts 15:1652–1664CrossRefGoogle Scholar
  21. Jaisi DP, Saleh NB, Blake RE, Elimelech M (2008) Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. Environ Sci Technol 42:8317–8323CrossRefGoogle Scholar
  22. Kanmani S, Gandhimathi R (2013) Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Appl Water Sci 3:193–205CrossRefGoogle Scholar
  23. Karim MR, Kuraoka M, Higuchi T, Sekine M, Imai T (2014) Assessment of heavy metal concentration from municipal solid waste open dumping sites in Bangladesh. J Hydrol Environ Res 2:41–49Google Scholar
  24. Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70CrossRefGoogle Scholar
  25. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle release of engineered nanomaterials. J Nanopart Res 15:1692–1708CrossRefGoogle Scholar
  26. Khosravi K, Hoque ME, Dimock B, Hintelmann H, Metcalfe CD (2012) A novel approach for determining total titanium from titanium dioxide nanoparticles suspended in water and biosolids by digestion with ammonium persulfate. Anal Chim Acta 713:86–91CrossRefGoogle Scholar
  27. Kinsinger N, Honda R, Keene V, Walker SL (2015) Titanium dioxide nanoparticle removal in primary prefiltration stages of water treatment: role of coating, natural organic matter, source water, and solution chemistry. Environ Eng Sci 32:292–300CrossRefGoogle Scholar
  28. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336CrossRefGoogle Scholar
  29. Larrea MT, Gómez-Pinilla I, Fariñas JC (1997) Microwave-assisted acid dissolution of sintered advanced ceramics for inductively coupled plasma atomic emission spectrometry. J Anal At Spectrom 12:1323–1332CrossRefGoogle Scholar
  30. Lecoanet HF, Wiesner MR (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38:4377–4382Google Scholar
  31. Lozano P, Berge ND (2012) Single-walled carbon nanotube behavior in representative mature leachate. Waste Manag 32:1699–1711CrossRefGoogle Scholar
  32. Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano TiO2 sol-gel type syntheses and its applications. J Mater Sci 46:3669–3686CrossRefGoogle Scholar
  33. Mallouk TE, Hydutsky BW, Mack EJ, Beckerman BB, Skluzacek JM (2007) Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol 41:6418–6424CrossRefGoogle Scholar
  34. Marcoux MA, Matias M, Olivier F, Keck G (2013) Review and prospect of emerging contaminants in waste—key issues and challenges linked to their presence in waste treatment schemes: general aspects and focus on nanoparticles. Waste Manag 33:2147–2156CrossRefGoogle Scholar
  35. Mudunkotuwa IA, Rupasinghe T, Wu CM, Grassian VH (2012) Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. Langmuir 28:396–403CrossRefGoogle Scholar
  36. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453CrossRefGoogle Scholar
  37. Musee N (2011) Nanowastes and the environment: potential new waste management paradigm. Environ Int 37:112–128CrossRefGoogle Scholar
  38. Nguyen D, Visvanathan C, Jacob P, Jegatheesan V (2015) Effect of cerium (IV) oxide and zinc oxide particles on biogas production. Int Biodeterior Biodegradation 102:1–7CrossRefGoogle Scholar
  39. Nia Y, Millour S, Noël L, Krystek P, de Jong W, Guerin T (2015) Determination of Ti from TiO2 nanoparticles in biological materials by different ICP-MS instruments: method validation and applications. J Nanomed Nanotechnol 6:1–8Google Scholar
  40. Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Matcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alternation in the environment. Environ Toxicol Chem 31:50–59CrossRefGoogle Scholar
  41. Nowack B, David RM, Fissan H, Morris H, Shatkin JA, Stintz M, Zepp R, Brouwer D (2013) Potential release scenarios for carbon nanotubes used in composites. Environ Int 59:1–11CrossRefGoogle Scholar
  42. Onay TT, Pohland FG (1998) In situ nitrogen management in controlled landfills. Water Res 32:1383–1392CrossRefGoogle Scholar
  43. Packer AP, Lariviere D, Li CS, Chen M, Fawcett A, Nielsen K, Mattson K, Chatt A, Scriver C, Erhardt LS (2007) Validation of an inductively coupled plasma mass spectrometry (ICP-MS) method for the determination of cerium, strontium, and titanium in ceramic materials used in radiological dispersal devices (RDDs). Anal Chim Acta 588:166–172CrossRefGoogle Scholar
  44. Phenrat T, Lowry GV (2009) Physicochemistry of polyelectrolyte coatings that increase stability, mobility and contaminant specificity of reactive nanoparticles used for groundwater remediation. In: Savage N, Diallo M, Duncan J, Street A, Sustich R, Andrew W (eds) Nanotechnology applications for clean water. Norwich, NY, USA, pp 249–267CrossRefGoogle Scholar
  45. Phenrat T, Kim H-J, Fagerlund F, Illanasekare T, Tilton RD, Lowry GV (2009) Particle size distribution, concentration and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environ Sci Technol 43:5079–5085CrossRefGoogle Scholar
  46. Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF (2012) Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem 31:93–99CrossRefGoogle Scholar
  47. Reinhart D, Berge N, Santra S, Bolyard SC (2010) Emerging contaminants: nanomaterial fate in landfills. Waste Manag 30:2020–2021CrossRefGoogle Scholar
  48. Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatement: review and opportunity. J Hazard Mater 150:468–493CrossRefGoogle Scholar
  49. Sakallioglu T, Bakirdoven M, Temizel I, Demirel B, Copty NK, Onay TT, Demirel CSU, Karanfil T (2016) Leaching of nano-ZnO in municipal solid waste. Under Rev J Hazard MaterGoogle Scholar
  50. Saleh N, Kim H-J, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42:3349–3355CrossRefGoogle Scholar
  51. San I, Onay TT (2001) Impact of various leachate recirculation regimes on municipal solid waste degradation. J Hazard Mater 87:259–271CrossRefGoogle Scholar
  52. Schmidt J, Vogelsberger W (2009) Aqueous long-term solubility of titania nanoparticles and titanium (IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. J Solution Chem 38:1267–1282CrossRefGoogle Scholar
  53. Sen TK, Khilar KC (2006) Review on subsurface colloids and colloid associated contaminant transport in saturated porous media. Adv Colloid Interface Sci 119:71–96CrossRefGoogle Scholar
  54. Sima L, Amador J, da Silva AK, Miller SM, Morse AN, Pellegring ML, Rock J, Wells MJM (2014) Emerging pollutants—part I: occurrence, fate and transport. Water Environ Res 86:1994–2035CrossRefGoogle Scholar
  55. Siripattanakul-Ratpukdi S, Fürhacker M (2014) Review: issues of silver nanoparticles in engineered environmental treatment systems. Water Air Soil Pollut 225:1939–1956CrossRefGoogle Scholar
  56. Steenhuis TS, Dathe A, Zevi Y, Smith JL, Gao B, Shaw SB, DeAlwis D, Amaro-Garcia S, Fehrman R, Cakmak ME, Toevs IC, Liu BM, Beyer SM, Crist JT, Hay AG, Richards BK, DiCarlo D, McCarthy JF (2006) Biocolloid retention in partially saturated soils. Biologia 61:S229–S233CrossRefGoogle Scholar
  57. Strobel C, Oehring H, Herrmann R, Förster M, Reller A, Hilger I (2015) Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis. J Nanopart Res 17:206–219CrossRefGoogle Scholar
  58. Szymczycha-Madeja A, Mulak W (2009) Comparison of various digestion procedures in chemical analysis of spent hydrodesulphurization catalyst. J Hazard Mater 164:776–780CrossRefGoogle Scholar
  59. Torkzaban S, Kim Y, Mulvihill M, Wan J, Tokunaga TK (2010) Transport and deposition of functionalized CdTe nanoparticles in saturated porous media. J Contam Hydrol 118:208–217CrossRefGoogle Scholar
  60. van Bussel W, Kerkhof F, van Kessel T, Lamers H, Nous D, Verdonk H, Verhoeven B, Boer N, Toonen H (2010) Accurate determination of titanium as titanium dioxide for limited sample size digestibility studies of feed and food matrices by inductively coupled plasma optical emission spectrometry with real-time simultaneous internal standardization. At Spectrosc 31:81–88Google Scholar
  61. Vogelsberger W, Schmidt J, Roelofs F (2008) Dissolution kinetics of oxidic nanoparticles: the observation of an unusual behavior. Colloids Surf A 324:51–57CrossRefGoogle Scholar
  62. Yang GCC, Tu H-C, Hung C-H (2007) Stability of nano-iron slurries and their transport in the subsurface. Sep Purif Technol 58:166–172CrossRefGoogle Scholar
  63. Yang Y, Xu M, Wall J, Hu Z (2012) Nanosilver impact on methanogenesis and biogas production from municipal solid waste. Waste Manag 32:816–825CrossRefGoogle Scholar
  64. Yang Y, Zhang C, Hu Z (2013a) Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ Sci Process Impacts 15:39–48CrossRefGoogle Scholar
  65. Yang Y, Gajaraj S, Wall JD, Hu Z (2013b) A comparison of nanosilver and silver ion effects on bioreactor landfill operations and methanogenic population dynamics. Water Res 47:3422–3430CrossRefGoogle Scholar
  66. Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, Liu C, Yang S (2014) CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 60:208–337CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ceyda Senem Uyguner-Demirel
    • 1
  • Burak Demirel
    • 1
    Email author
  • Nadim K. Copty
    • 1
  • Turgut T. Onay
    • 1
  1. 1.Institute of Environmental SciencesBoğaziçi UniversityBebek, IstanbulTurkey

Personalised recommendations