Environmental Effects of nZVI for Land and Groundwater Remediation

  • G. LibralatoEmail author
  • A. Costa Devoti
  • A. Volpi Ghirardini
  • D. A. L. Vignati


The development of nanostructured materials enable the upgrade of traditional treatment with macro- and micro-sized iron. Nano-zerovalent iron (nZVI) present interesting characteristics like high surface-area-to-volume ratio, levels of stepped surface, and surface energies. nZVI is typically made of 5-40 nm sized Fe0/Fe-oxide particles and can rapidly transform many environmental contaminants into less harmful products (e.g. dehalogenation or metal reduction) being promising as an in situ remediation agent. We present the state-of-the-art of nZVI based treatment technologies considering their environmental and (eco-)toxicological implications.


Land remediation nZVI Dehalogenation Reduction Ecotoxicology 


  1. Bardos P, Bone B, Daly P, Elliott D, Jones S, Lowry G, Merly C (2015) A risk/benefit appraisal for the application of nano-scale zero valent Iron (nZVI) for the remediation of contaminated sites supporting MS3—NanoRem information for decision makers—initial version. Taking nanotechnological remediation processes from lab scale to end user applications for the restoration of a clean environment project Nr.: 309517 EU, 7th FP, NMP.2012.1.2 WP9: Dissemination, Dialogue with Stakeholders and ExploitationGoogle Scholar
  2. Biswas P, Wu CY (2005) Nanoparticles and the environment. J Air Waste Manage Assoc 55(6):708–746CrossRefGoogle Scholar
  3. Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, Dai J, Dendooven L, Peres G, Tondoh JE, Cluzeau D, Brun J-J (2013) A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci 64(2):161–182CrossRefGoogle Scholar
  4. Čábalová L, Čabanová K, Bielniková H, Kukutschová J, Dvořáčková J, Dědková K, Zelenik K, Komínek P (2015) Micro-and nanosized particles in nasal mucosa: a pilot study. BioMed Res IntGoogle Scholar
  5. Comba S, Di Molfetta A, Sethi, R (2011) A comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers. Water Air Soil Pollut 215(1–4):595–607Google Scholar
  6. Dong H, Lo IMC (2013) Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron. Water Res 47(1):419–427CrossRefGoogle Scholar
  7. Dong H, Ahmad K, Zeng G, Li Z, Chen G, He Q, Xie Y, Wu Y, Zhao F, Zeng Y (2016) Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron. Environ Pollut 211:363–369CrossRefGoogle Scholar
  8. DuPont Chemicals (2007) Nanomaterial risk assessment worksheet: zero valent nano sized iron nanoparticles (nZVI) for environmental remediationGoogle Scholar
  9. Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922–4926CrossRefGoogle Scholar
  10. El-Temsah YS, Sevcu A, Bobcikova K, Cernik M, Joner EJ (2016) DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere 144:2221–2228CrossRefGoogle Scholar
  11. EPA (2007) Nanotechnology white paper. EPA 100/B-07/001Google Scholar
  12. ESTCP (2006) Protocol for enhanced in situ bioremediation using emulsified edible oil industrial environmental servicesGoogle Scholar
  13. Gornati R, Pedretti E, Rossi F, Cappellini F, Zanella M, Olivato I, Sabbioni E, Bernardini G (2016) Zerovalent Fe, Co and Ni nanoparticle toxicity evaluated on SKOV-3 and U87 cell lines. J Appl Toxicol 36(3):385–393CrossRefGoogle Scholar
  14. Guan X, Sun Y, Qin H, Li J, Lo IM, He D, Dong H (2015) The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res 75:224–248CrossRefGoogle Scholar
  15. Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects: pros and cons. Environ Health Perspect 1818–1825Google Scholar
  16. Hussain I, Raschid L, Hanjra MA, Marikar F, Van Der Hoek W (2002) Wastewater use in agriculture: review of impacts and methodological issues in valuing impacts: with an extended list of bibliographical references, vol 37, IwmiGoogle Scholar
  17. Jung B, O’Carroll D, Sleep B (2014) The influence of humic acid and clay content on the transport of polymer-coated iron nanoparticles through sand. Sci Total Environ 496:155–164CrossRefGoogle Scholar
  18. Keenan CR, Goth-Goldstein R, Lucas D, Sedlak DL (2009) Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environ Sci Technol 43(12):4555–4560CrossRefGoogle Scholar
  19. Kim JY, Park HJ, Lee C, Nelson KL, Sedlak DL, Yoon J (2010) Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. Appl Environ Microbiol 76(22):7668–7670CrossRefGoogle Scholar
  20. Kirschling TL, Gregory KB, Minkley EG Jr, Lowry GV, Tilton RD (2010) Impact of nanoscale zerovalent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44(9):3474–3480CrossRefGoogle Scholar
  21. Lee CC, Lien HL, Wu SC, Doong RA, Chao CC (2014) Reduction of priority pollutants by nanoscale zerovalent iron in subsurface environments. Aquananotechnol Glob Prospects 63Google Scholar
  22. Lefevre E, Bossa N, Wiesner MR, Gunsch CK (2016, in proof) A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Sci Total Environ. doi: 10.1016/j.scitotenv.2016.02.003
  23. Libralato G, Costa Devoti A, Zanella M, Sabbioni E, Mičetić I, Manodori L, Pigozzo A, Manenti S, Groppi F, Ghirardini AV (2016) Phytotoxicity of ionic, micro-and nano-sized iron in three plant species. Ecotoxicol Environ Saf 123:81–88CrossRefGoogle Scholar
  24. Lin Y-H, Tseng H-H, Wey M-Y, Lin M-D (2010) Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Sci Total Environ 408(10):2260–2267CrossRefGoogle Scholar
  25. Liu Y, Li S, Chen Z, Megharaj M, Naidu R (2014) Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp. Chemosphere 108:426–432CrossRefGoogle Scholar
  26. Liu A, Liu J, Han J, Zhang W-X (2016, in proof) Evolution of nanoscale zero-valent iron (nZVI) in water: microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides. J Hazard Mater. doi: 10.1016/j.jhazmat.2015.12.070
  27. Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target 12(9–10):635–641Google Scholar
  28. Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M, Colman BP, Hsu-Kim H, Bernhardt ES, Matson CW, Wiesner MR (2012) Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46(13):7027–7036CrossRefGoogle Scholar
  29. Ma X, Gurung A, Deng Y (2013) Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ 443:844–849CrossRefGoogle Scholar
  30. Marsalek B, Jancula D, Marsalkova E, Mashlan M, Safarova K, Tucek J, Zboril R (2012) Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria. Environ Sci Technol 46(4):2316–2323CrossRefGoogle Scholar
  31. Masciangioli T, Zhang WX (2003) Peer reviewed: environmental technologies at the nanoscale. Environ Sci Technol 37(5):102A–108ACrossRefGoogle Scholar
  32. MinAmb (2015) Ministero dell’Ambiente e dela Tutela del Territorio e del Mare.
  33. NATO (1998) NATO/CCMS pilot study evaluation of demonstrated and emerging technologies for the treatment of contaminated land and groundwater (phase III)Google Scholar
  34. Noubactep C (2010) The fundamental mechanism of aqueous contaminant removal by metallic iron. Water SA 36:663–670CrossRefGoogle Scholar
  35. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230CrossRefGoogle Scholar
  36. O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122CrossRefGoogle Scholar
  37. Park CM, Chu KH, Heo J, Her N, Jang M, Son A, Yoon Y (2016) Environmental behavior of engineered nanomaterials in porous media: a review. J Hazard Mater 309:133–150CrossRefGoogle Scholar
  38. Peeters K, Lespes G, Zuliani T, Ščančar J, Milačič R (2016) The fate of iron nanoparticles in environmental waters treated with nanoscale zero-valent iron, FeONPs and Fe3O4NPs. Water Res 94:315–327CrossRefGoogle Scholar
  39. Phenrat T, Long TC, Lowry GV, Veronesi B (2008) Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43(1):195–200CrossRefGoogle Scholar
  40. Raychoudhury T, Tufenkji N, Ghoshal S (2012) Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Res 46(6):1735–1744CrossRefGoogle Scholar
  41. Rickerby DG, Morrison M (2007) Report from the workshop on nanotechnologies for environmental remediationGoogle Scholar
  42. Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632CrossRefGoogle Scholar
  43. Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters. Environmental Science and Technology SeriesGoogle Scholar
  44. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48CrossRefGoogle Scholar
  45. USEPA (2005a) Nanoscale ZVI injection rapidly reduced source CVOCs in bedrock ground waterGoogle Scholar
  46. USEPA (2005b) Workshop on nanotechnology for site remediation U.S. Department of Commerce, Washington, DC, 20–21 Oct 2005Google Scholar
  47. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156CrossRefGoogle Scholar
  48. Wang J, Fang Z, Cheng W, Yan X, Tsang PE, Zhao D (2016) Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environ Pollut 210:338–345CrossRefGoogle Scholar
  49. Xiu ZM, Jin ZH, Li TL, Mahendra S, Lowry GV, Alvarez PJ (2010) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour Technol 101(4):1141–1146CrossRefGoogle Scholar
  50. Yang Y, Guo J, Hu Z (2013) Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion. Water Res 47(17):6790–6800CrossRefGoogle Scholar
  51. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3–4):323–332CrossRefGoogle Scholar
  52. Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D (2016) An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res 100:245–266CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • G. Libralato
    • 1
    • 2
    Email author
  • A. Costa Devoti
    • 2
  • A. Volpi Ghirardini
    • 2
  • D. A. L. Vignati
    • 3
  1. 1.Department of BiologyUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Environmental Sciences, Informatics and StatisticsUniversity Ca’ Foscari VeniceMestre-VeniceItaly
  3. 3.LIEC UMR 7360CNRS and Université de LorraineMetzFrance

Personalised recommendations