Skip to main content

Immune Therapy for Sarcomas

  • Chapter
  • First Online:
Immunotherapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 995))

  • 5152 Accesses

Abstract

Absolute lymphocyte count (ALC) recovery rapidly occurring at 14 days after start of chemotherapy for osteosarcoma and Ewing sarcoma is a good prognostic factor. Conversely, lymphopenia is associated with significantly decreased sarcoma survival. Clearly, the immune system can contribute towards better survival from sarcoma. This chapter will describe treatment and host factors that influence immune function and how effective local control and systemic interventions of sarcoma therapy can cause inflammation and/or immune suppression but are currently the standard of care. Preclinical and clinical efforts to enhance immune function against sarcoma will be reviewed. Interventions to enhance immune function against sarcoma have included regional therapy (surgery, cryoablation, radiofrequency ablation, electroporation, and radiotherapy), cytokines, macrophage activators (mifamurtide), vaccines, natural killer (NK) cells, T cell receptor (TCR) and chimeric antigen receptor (CAR) T cells, and efforts to decrease inflammation. The latter is particularly important because of new knowledge about factors influencing expression of checkpoint inhibitory molecules, PD1 and CTLA-4, in the tumor microenvironment. Since these molecules can now be blocked using anti-PD1 and anti-CTLA-4 antibodies, how to translate this knowledge into more effective immune therapies in the future as well as how to augment effectiveness of current interventions (e.g., radiotherapy) is a challenge. Barriers to implementing this knowledge include cost of agents that release immune checkpoint blockade and coordination of cost-effective outpatient sarcoma treatment. Information on how to research clinical trial eligibility criteria and how to access current immune therapy trials against sarcoma are shared, too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ray-Coquard I, et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009;69(13):5383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. De Angulo G, et al. Early lymphocyte recovery as a prognostic indicator for high-risk Ewing sarcoma. J Pediatr Hematol Oncol. 2007;29(1):48–52.

    Article  PubMed  Google Scholar 

  3. DuBois SG, Elterman K, Grier HE. Early lymphocyte recovery in Ewing sarcoma. J Pediatr Hematol Oncol. 2007;29(5):351–2.

    Article  PubMed  Google Scholar 

  4. Anderson P. Predicting and facilitating survival of pediatric cancer patients: the ALC story. Pediatr Blood Cancer. 2010;55(6):1041–2.

    Article  PubMed  Google Scholar 

  5. Moore C, et al. Prognostic significance of early lymphocyte recovery in pediatric osteosarcoma. Pediatr Blood Cancer. 2010;55(6):1096–102.

    Article  PubMed  Google Scholar 

  6. Idowu OK, et al. Clinical implication of pretreatment neutrophil to lymphocyte ratio in soft tissue sarcoma. Biomarkers. 2012;17(6):539–44.

    Article  CAS  PubMed  Google Scholar 

  7. Roberts SS, Chou AJ, Cheung NK. Immunotherapy of childhood sarcomas. Front Oncol. 2015;5:181.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wei L, Meng QG, Bi ZG. Result of a randomized clinical trial comparing different types of anesthesia on the immune function of patients with osteosarcoma undergoing radical resection. Panminerva Med. 2013;55(2):211–6.

    CAS  PubMed  Google Scholar 

  9. Wild AT, et al. The association between chemoradiation-related lymphopenia and clinical outcomes in patients with locally advanced pancreatic adenocarcinoma. Am J Clin Oncol. 2015;38(3):259–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grossman SA, et al. Survival in patients with severe lymphopenia following treatment with radiation and chemotherapy for newly diagnosed solid tumors. J Natl Compr Cancer Netw. 2015;13(10):1225–31.

    CAS  Google Scholar 

  11. Hou CH, et al. The use of radiation therapy in localized high-grade soft tissue sarcoma and potential impact on survival. Ann Surg Oncol. 2015;22(9):2831–8.

    Article  PubMed  Google Scholar 

  12. Kuo P, et al. Galectin-1 mediates radiation-related lymphopenia and attenuates NSCLC radiation response. Clin Cancer Res. 2014;20(21):5558–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Welsh JW, et al. Galectin-1 and immune suppression during radiotherapy. Clin Cancer Res. 2014;20(24):6230–2.

    Article  CAS  PubMed  Google Scholar 

  14. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61.

    Article  CAS  PubMed  Google Scholar 

  15. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205–14.

    Article  CAS  PubMed  Google Scholar 

  16. Momtaz P, Postow MA. Immunologic checkpoints in cancer therapy: focus on the programmed death-1 (PD-1) receptor pathway. Pharmgenomics Pers Med. 2014;7:357–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tumeh PC, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Homet Moreno B, et al. Anti-PD-1 therapy in melanoma. Semin Oncol. 2015;42(3):466–73.

    Article  CAS  PubMed  Google Scholar 

  20. D’Angelo SP, et al. Prevalence of tumor-infiltrating lymphocytes and PD-L1 expression in the soft tissue sarcoma microenvironment. Hum Pathol. 2015;46(3):357–65.

    Article  PubMed  CAS  Google Scholar 

  21. Kim JR, et al. Tumor infiltrating PD1-positive lymphocytes and the expression of PD-L1 predict poor prognosis of soft tissue sarcomas. PLoS One. 2013;8(12):e82870.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lussier DM, et al. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions. J Immunother. 2015;38(3):96–106.

    Article  CAS  PubMed  Google Scholar 

  23. Klimberg VS, et al. Glutamine-enriched diets support muscle glutamine metabolism without stimulating tumor growth. J Surg Res. 1990;48(4):319–23.

    Article  CAS  PubMed  Google Scholar 

  24. Klimberg VS, McClellan JL. Claude H. Organ, Jr. Honorary lectureship. Glutamine, cancer, and its therapy. Am J Surg. 1996;172(5):418–24.

    Article  CAS  PubMed  Google Scholar 

  25. Klimberg VS, et al. Oral glutamine accelerates healing of the small intestine and improves outcome after whole abdominal radiation. Arch Surg. 1990;125(8):1040–5.

    Article  CAS  PubMed  Google Scholar 

  26. Klimberg VS, et al. Prophylactic glutamine protects the intestinal mucosa from radiation injury. Cancer. 1990;66(1):62–8.

    Article  CAS  PubMed  Google Scholar 

  27. Souba WW, Klimberg VS, Copeland 3rd EM. Glutamine nutrition in the management of radiation enteritis. JPEN J Parenter Enteral Nutr. 1990;14(4 Suppl):106S–8S.

    Article  CAS  PubMed  Google Scholar 

  28. Klimberg S. Prevention of radiogenic side effects using glutamine-enriched elemental diets. Recent Results Cancer Res. 1991;121:283–5.

    Article  CAS  PubMed  Google Scholar 

  29. Klimberg VS, et al. Glutamine facilitates chemotherapy while reducing toxicity. JPEN J Parenter Enteral Nutr. 1992;16(6 Suppl):83S–7S.

    Article  CAS  PubMed  Google Scholar 

  30. Rubio IT, et al.. Effect of glutamine on methotrexate efficacy and toxicity. Ann Surg. 1998; 227(5):772–8; discussion 778–80.

    Google Scholar 

  31. Skubitz KM, Anderson PM. Oral glutamine to prevent chemotherapy induced stomatitis: a pilot study. J Lab Clin Med. 1996;127(2):223–8.

    Article  CAS  PubMed  Google Scholar 

  32. Anderson PM, Schroeder G, Skubitz KM. Oral glutamine reduces the duration and severity of stomatitis after cytotoxic cancer chemotherapy. Cancer. 1998;83(7):1433–9.

    Article  CAS  PubMed  Google Scholar 

  33. Peterson DE, Jones JB, Petit 2nd RG. Randomized, placebo-controlled trial of Saforis for prevention and treatment of oral mucositis in breast cancer patients receiving anthracycline-based chemotherapy. Cancer. 2007;109(2):322–31.

    Article  CAS  PubMed  Google Scholar 

  34. Todorova VK, et al. Modulation of p53 and c-myc in DMBA-induced mammary tumors by oral glutamine. Nutr Cancer. 2006;54(2):263–73.

    Article  CAS  PubMed  Google Scholar 

  35. Lim V, et al. Glutamine prevents DMBA-induced squamous cell cancer. Oral Oncol. 2009;45(2):148–55.

    Article  CAS  PubMed  Google Scholar 

  36. Cao Y, et al. Glutamine enhances gut glutathione production. JPEN J Parenter Enteral Nutr. 1998;22(4):224–7.

    Article  CAS  PubMed  Google Scholar 

  37. Todorova VK, et al. Effect of dietary glutamine on tumor glutathione levels and apoptosis-related proteins in DMBA-induced breast cancer of rats. Breast Cancer Res Treat. 2004;88(3):247–56.

    Article  CAS  PubMed  Google Scholar 

  38. Todorova VK, et al. Oral glutamine protects against acute doxorubicin-induced cardiotoxicity of tumor-bearing rats. J Nutr. 2010;140(1):44–8.

    Article  CAS  PubMed  Google Scholar 

  39. Todorova VK, et al. Tamoxifen and raloxifene suppress the proliferation of estrogen receptor-negative cells through inhibition of glutamine uptake. Cancer Chemother Pharmacol. 2011;67(2):285–91.

    Article  CAS  PubMed  Google Scholar 

  40. Rubio I, et al. Oral glutamine reduces radiation morbidity in breast conservation surgery. JPEN J Parenter Enteral Nutr. 2013;37(5):623–30.

    Article  PubMed  CAS  Google Scholar 

  41. Jaffe N, et al. Can cure in patients with osteosarcoma be achieved exclusively with chemotherapy and abrogation of surgery? Cancer. 2002;95(10):2202–10.

    Article  PubMed  Google Scholar 

  42. Allin KH, Nordestgaard BG. Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer. Crit Rev Clin Lab Sci. 2011;48(4):155–70.

    Article  CAS  PubMed  Google Scholar 

  43. Nakamura T, et al. The value of C-reactive protein and comorbidity in predicting survival of patients with high grade soft tissue sarcoma. Eur J Cancer. 2013;49(2):377–85.

    Article  CAS  PubMed  Google Scholar 

  44. Nakamura T, et al. The prognostic value of the serum level of C-reactive protein for the survival of patients with a primary sarcoma of bone. Bone Joint J. 2013;95-B(3):411–8.

    Article  CAS  PubMed  Google Scholar 

  45. Nakamura T, et al. The role of C-reactive protein in predicting post-metastatic survival of patients with metastatic bone and soft tissue sarcoma. Tumour Biol. 2015;36(10):7515–20.

    Article  CAS  PubMed  Google Scholar 

  46. Nakamura T, et al. The combined use of the neutrophil-lymphocyte ratio and C-reactive protein level as prognostic predictors in adult patients with soft tissue sarcoma. J Surg Oncol. 2013;108(7):481–5.

    Article  CAS  PubMed  Google Scholar 

  47. Szkandera J, et al. Validation of the prognostic relevance of plasma C-reactive protein levels in soft-tissue sarcoma patients. Br J Cancer. 2013;109(9):2316–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hall WA, et al. The association between C-reactive protein (CRP) level and biochemical failure-free survival in patients after radiation therapy for nonmetastatic adenocarcinoma of the prostate. Cancer. 2013;119(18):3272–9.

    Article  CAS  PubMed  Google Scholar 

  49. Sharma A, et al. Radiotherapy of human sarcoma promotes an intratumoral immune effector signature. Clin Cancer Res. 2013;19(17):4843–53.

    Article  CAS  PubMed  Google Scholar 

  50. Haeusler J, et al. The value of local treatment in patients with primary, disseminated, multifocal Ewing sarcoma (PDMES). Cancer. 2010;116(2):443–50.

    Article  PubMed  Google Scholar 

  51. D’Andrea FP. Intrinsic radiation resistance of mesenchymal cancer stem cells and implications for treatment response in a murine sarcoma model. Dan Med J. 2012;59(2):B4388.

    PubMed  Google Scholar 

  52. Canter RJ, et al. Anti-proliferative but not anti-angiogenic tyrosine kinase inhibitors enrich for cancer stem cells in soft tissue sarcoma. BMC Cancer. 2014;14:756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Awad O, et al. High ALDH activity identifies chemotherapy-resistant Ewing's sarcoma stem cells that retain sensitivity to EWS-FLI1 inhibition. PLoS One. 2010;5(11):e13943.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Emori M, et al. High expression of CD109 antigen regulates the phenotype of cancer stem-like cells/cancer-initiating cells in the novel epithelioid sarcoma cell line ESX and is related to poor prognosis of soft tissue sarcoma. PLoS One. 2013;8(12):e84187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lohberger B, et al. Aldehyde dehydrogenase 1, a potential marker for cancer stem cells in human sarcoma. PLoS One. 2012;7(8):e43664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jaffe N. Historical perspective on the introduction and use of chemotherapy for the treatment of osteosarcoma. Adv Exp Med Biol. 2014;804:1–30.

    Article  CAS  PubMed  Google Scholar 

  57. Jaffe N, et al. Control of primary osteosarcoma with chemotherapy. Cancer. 1985;56(3):461–6.

    Article  CAS  PubMed  Google Scholar 

  58. D'Adamo DR. Appraising the current role of chemotherapy for the treatment of sarcoma. Semin Oncol. 2011;38(Suppl 3):S19–29.

    Article  PubMed  CAS  Google Scholar 

  59. Wesolowski R, Budd GT. Use of chemotherapy for patients with bone and soft-tissue sarcomas. Cleve Clin J Med. 2010;77(Suppl 1):S23–6.

    Article  PubMed  Google Scholar 

  60. Schuetze SM. Chemotherapy in the management of osteosarcoma and Ewing’s sarcoma. J Natl Compr Cancer Netw. 2007;5(4):449–55.

    CAS  Google Scholar 

  61. Linch M, et al. Systemic treatment of soft-tissue sarcoma-gold standard and novel therapies. Nat Rev Clin Oncol. 2014;11(4):187–202.

    Article  CAS  PubMed  Google Scholar 

  62. Movva S, Verschraegen C. Systemic management strategies for metastatic soft tissue sarcoma. Drugs. 2011;71(16):2115–29.

    Article  CAS  PubMed  Google Scholar 

  63. Harwood JL, et al. Targeted chemotherapy in bone and soft-tissue sarcoma. Orthop Clin North Am. 2015;46(4):587–608.

    Article  PubMed  Google Scholar 

  64. Ranieri G, et al. Pazopanib a tyrosine kinase inhibitor with strong anti-angiogenetic activity: a new treatment for metastatic soft tissue sarcoma. Crit Rev Oncol Hematol. 2014;89(2):322–9.

    Article  PubMed  Google Scholar 

  65. Rajendra R, Jones RL, Pollack SM. Targeted treatment for advanced soft tissue sarcoma: profile of pazopanib. Onco Targets Ther. 2013;6:217–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Riedel RF, Maki RG, Wagner AJ. Targeted therapy in sarcoma: should we be lumpers or splitters? Am Soc Clin Oncol Educ Book. 2012:652–7.

    Google Scholar 

  67. Shor AC, et al. Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on SRC kinase for survival. Cancer Res. 2007;67(6):2800–8.

    Article  CAS  PubMed  Google Scholar 

  68. Radaelli S, et al. Emerging therapies for adult soft tissue sarcoma. Expert Rev Anticancer Ther. 2014;14(6):689–704.

    Article  CAS  PubMed  Google Scholar 

  69. Walczak BE, Irwin RB. Sarcoma chemotherapy. J Am Acad Orthop Surg. 2013;21(8):480–91.

    Article  PubMed  Google Scholar 

  70. Siegel GW, et al. The multidisciplinary management of bone and soft tissue sarcoma: an essential organizational framework. J Multidiscip Healthc. 2015;8:109–15.

    PubMed  PubMed Central  Google Scholar 

  71. Jiang L, et al. Significance of local treatment in patients with metastatic soft tissue sarcoma. Am J Cancer Res. 2015;5(6):2075–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jones RL, et al. Radiofrequency ablation is a feasible therapeutic option in the multi modality management of sarcoma. Eur J Surg Oncol. 2010;36(5):477–82.

    Article  CAS  PubMed  Google Scholar 

  73. Koelblinger C, Strauss S, Gillams A. Outcome after radiofrequency ablation of sarcoma lung metastases. Cardiovasc Intervent Radiol. 2014;37(1):147–53.

    Article  PubMed  Google Scholar 

  74. Anderson P. Non-surgical treatment of pulmonary and extra-pulmonary metastases. Cancer Treat Res. 2009;152:203–15.

    Article  PubMed  Google Scholar 

  75. Di Monta G, et al. Electrochemotherapy as “new standard of care” treatment for cutaneous Kaposi's sarcoma. Eur J Surg Oncol. 2014;40(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  76. Yu Z, et al. Therapeutic potential of irreversible electroporation in sarcoma. Expert Rev Anticancer Ther. 2012;12(2):177–84.

    Article  CAS  PubMed  Google Scholar 

  77. de Bree R, et al. Electroporation therapy in soft tissue sarcoma: a potentially effective novel treatment. Sarcoma. 2006;2006:85234.

    PubMed  PubMed Central  Google Scholar 

  78. Hyacinthe M, et al. Electrically enhanced drug delivery for the treatment of soft tissue sarcoma. Cancer. 1999;85(2):409–17.

    Article  CAS  PubMed  Google Scholar 

  79. Lippa N, et al. Standardization of selection criteria for percutaneous image-guided cryoablation of recurrent soft-tissue sarcomas. Diagn Interv Imaging. 2014;95(11):1071–7.

    Article  CAS  PubMed  Google Scholar 

  80. Ahlmann ER, et al. Cryoablation and resection influences patient survival for soft tissue sarcomas: impact on survivorship and local recurrence. Clin Orthop Relat Res. 2007;459:174–81.

    Article  PubMed  Google Scholar 

  81. Avedian RS, et al. Magnetic resonance guided high-intensity focused ultrasound ablation of musculoskeletal tumors. Curr Orthop Pract. 2011;22(4):303–8.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chen W, et al. Primary bone malignancy: effective treatment with high-intensity focused ultrasound ablation. Radiology. 2010;255(3):967–78.

    Article  PubMed  Google Scholar 

  83. Brown LC, et al. Stereotactic body radiotherapy for metastatic and recurrent ewing sarcoma and osteosarcoma. Sarcoma. 2014;2014:418270.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dhakal S, et al. Stereotactic body radiotherapy for pulmonary metastases from soft-tissue sarcomas: excellent local lesion control and improved patient survival. Int J Radiat Oncol Biol Phys. 2012;82(2):940–5.

    Article  PubMed  Google Scholar 

  85. Ozaki T. Diagnosis and treatment of Ewing sarcoma of the bone: a review article. J Orthop Sci. 2015;20(2):250–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Delisca GO, et al. Tumor size increase following preoperative radiation of soft tissue sarcomas does not affect prognosis. J Surg Oncol. 2013;107(7):723–7.

    Article  PubMed  Google Scholar 

  87. Kansara M, et al. Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation. J Clin Invest. 2013;123(12):5351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Arndt CA, et al. Inhaled granulocyte-macrophage colony stimulating factor for first pulmonary recurrence of osteosarcoma: effects on disease-free survival and immunomodulation. a report from the Children’s Oncology Group. Clin Cancer Res. 2010;16(15):4024–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Morales-Arias J, et al. Expression of granulocyte-colony-stimulating factor and its receptor in human Ewing sarcoma cells and patient tumor specimens: potential consequences of granulocyte-colony-stimulating factor administration. Cancer. 2007;110(7):1568–77.

    Article  CAS  PubMed  Google Scholar 

  90. D’Angelo SP, et al. Sarcoma immunotherapy: past approaches and future directions. Sarcoma. 2014;2014:391967.

    PubMed  PubMed Central  Google Scholar 

  91. Anderson PM, et al. Increased local antitumor effects of interleukin 2 liposomes in mice with MCA-106 sarcoma pulmonary metastases. Cancer Res. 1990;50(6):1853–6.

    CAS  PubMed  Google Scholar 

  92. Guma SR, et al. Aerosol interleukin-2 induces natural killer cell proliferation in the lung and combination therapy improves the survival of mice with osteosarcoma lung metastasis. Pediatr Blood Cancer. 2014;61(8):1362–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Guma SR, et al. Natural killer cell therapy and aerosol interleukin-2 for the treatment of osteosarcoma lung metastasis. Pediatr Blood Cancer. 2014;61(4):618–26.

    Article  PubMed  Google Scholar 

  94. Anderson P, et al. Novel bone cancer drugs: investigational agents and control paradigms for primary bone sarcomas (Ewing’s sarcoma and osteosarcoma). Expert Opin Investig Drugs. 2008;17(11):1703–15.

    Article  CAS  PubMed  Google Scholar 

  95. Kleinerman ES, Jaffe N. Liposomal MTP-PE for the adjuvant therapy of osteosarcoma. Prog Clin Biol Res. 1990;343:263–79.

    CAS  PubMed  Google Scholar 

  96. Kleinerman ES, et al. Phase II study of liposomal muramyl tripeptide in osteosarcoma: the cytokine cascade and monocyte activation following administration. J Clin Oncol. 1992;10(8):1310–6.

    Article  CAS  PubMed  Google Scholar 

  97. Meyers PA. Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev Anticancer Ther. 2009;9(8):1035–49.

    Article  CAS  PubMed  Google Scholar 

  98. Meyers PA. Systemic therapy for osteosarcoma and ewing sarcoma. Am Soc Clin Oncol Educ Book. 2015;35:e644–7.

    Article  Google Scholar 

  99. Meyers PA, Chou AJ. Muramyl tripeptide-phosphatidyl ethanolamine encapsulated in liposomes (L-MTP-PE) in the treatment of osteosarcoma. Adv Exp Med Biol. 2014;804:307–21.

    Article  CAS  PubMed  Google Scholar 

  100. Meyers PA, et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children’s Oncology Group. J Clin Oncol. 2008;26(4):633–8.

    Article  CAS  PubMed  Google Scholar 

  101. Chou AJ, et al. Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children’s Oncology Group. Cancer. 2009;115(22):5339–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Anderson PM, et al. Mifamurtide in metastatic and recurrent osteosarcoma: a patient access study with pharmacokinetic, pharmacodynamic, and safety assessments. Pediatr Blood Cancer. 2014;61(2):238–44.

    Article  PubMed  Google Scholar 

  103. Ahmed M, Cheung NK. Engineering anti-GD2 monoclonal antibodies for cancer immunotherapy. FEBS Lett. 2014;588(2):288–97.

    Article  CAS  PubMed  Google Scholar 

  104. Navid F, Santana VM, Barfield RC. Anti-GD2 antibody therapy for GD2-expressing tumors. Curr Cancer Drug Targets. 2010;10(2):200–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Frost JD, et al. A phase I/IB trial of murine monoclonal anti-GD2 antibody 14.G2a plus interleukin-2 in children with refractory neuroblastoma: a report of the Children’s Cancer Group. Cancer. 1997;80(2):317–33.

    Article  CAS  PubMed  Google Scholar 

  106. Anderson PM, et al. In vitro and in vivo cytotoxicity of an anti-osteosarcoma immunotoxin containing pokeweed antiviral protein. Cancer Res. 1995;55(6):1321–7.

    CAS  PubMed  Google Scholar 

  107. Ek O, et al. Antitumor activity of TP3(anti-p80)-pokeweed antiviral protein immunotoxin in hamster cheek pouch and severe combined immunodeficient mouse xenograft models of human osteosarcoma. Clin Cancer Res. 1998;4(7):1641–7.

    CAS  PubMed  Google Scholar 

  108. Herbst RS, et al. Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol. 2010;28(17):2839–46.

    Article  CAS  PubMed  Google Scholar 

  109. Subbiah V, et al. Targeting the apoptotic pathway in chondrosarcoma using recombinant human Apo2L/TRAIL (dulanermin), a dual proapoptotic receptor (DR4/DR5) agonist. Mol Cancer Ther. 2012;11(11):2541–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Skubitz KM. Giant cell tumor of bone: current treatment options. Curr Treat Options in Oncol. 2014;15(3):507–18.

    Article  Google Scholar 

  111. Thomas D, et al. Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol. 2010;11(3):275–80.

    Article  CAS  PubMed  Google Scholar 

  112. Thomas DM, Skubitz KM. Giant cell tumour of bone. Curr Opin Oncol. 2009;21(4):338–44.

    Article  PubMed  Google Scholar 

  113. Pappo AS, et al. A phase 2 trial of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF-1R), in patients with recurrent or refractory rhabdomyosarcoma, osteosarcoma, synovial sarcoma, and other soft tissue sarcomas: results of a sarcoma alliance for research through collaboration study. Cancer. 2014;120(16):2448–56.

    Article  CAS  PubMed  Google Scholar 

  114. Tabernero J, et al. Anticancer activity of the type I insulin-like growth factor receptor antagonist, ganitumab, in combination with the death receptor 5 agonist, conatumumab. Target Oncol. 2015;10(1):65–76.

    Article  PubMed  Google Scholar 

  115. Anderson, PM, et al. A Phase II study of clinical activity of SCH717454 (robatumumab) in relapsed osteosarcoma and Ewing Sarcoma. Clin Cancer Immunol. 2015; in review.

    Google Scholar 

  116. Naing A, et al. Phase I trial of cixutumumab combined with temsirolimus in patients with advanced cancer. Clin Cancer Res. 2011;17(18):6052–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Naing A, et al. Insulin growth factor receptor (IGF-1R) antibody cixutumumab combined with the mTOR inhibitor temsirolimus in patients with metastatic adrenocortical carcinoma. Br J Cancer. 2013;108(4):826–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Naing A, et al. Insulin growth factor-receptor (IGF-1R) antibody cixutumumab combined with the mTOR inhibitor temsirolimus in patients with refractory Ewing's sarcoma family tumors. Clin Cancer Res. 2012;18(9):2625–31.

    Article  CAS  PubMed  Google Scholar 

  119. Ghisoli M, et al. Pilot trial of FANG Immunotherapy in Ewing's sarcoma. Mol Ther. 2015;23(6):1103–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nemunaitis J, et al. Summary of bi-shRNA/GM-CSF augmented autologous tumor cell immunotherapy (FANG) in advanced cancer of the liver. Oncology. 2014;87(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  121. Krishnadas DK, et al. A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma. Cancer Immunol Immunother. 2015;64(10):1251–60.

    Article  CAS  PubMed  Google Scholar 

  122. Ahmed N, et al. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol Ther. 2009;17(10):1779–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rainusso N, et al. Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma. Cancer Gene Ther. 2012;19(3):212–7.

    Article  CAS  PubMed  Google Scholar 

  124. Ahmed N, et al. Human epidermal growth factor receptor 2 (HER2)—specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol. 2015;33(15):1688–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lai JP, et al. NY-ESO-1 expression in synovial sarcoma and other mesenchymal tumors: significance for NY-ESO-1-based targeted therapy and differential diagnosis. Mod Pathol. 2012;25(6):854–8.

    Article  PubMed  Google Scholar 

  126. Robbins PF, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29(7):917–24.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Hanna GG, Coyle VM, Prise KM. Immune modulation in advanced radiotherapies: targeting out-of-field effects. Cancer Lett. 2015;368(2):246–51.

    Article  CAS  PubMed  Google Scholar 

  128. Grimaldi AM, et al. Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology. 2014;3:e28780.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Park SS, et al. PD-1 restrains radiotherapy-induced abscopal effect. Cancer Immunol Res. 2015;3(6):610–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shahabi V, et al. Immune-priming of the tumor microenvironment by radiotherapy: rationale for combination with immunotherapy to improve anticancer efficacy. Am J Clin Oncol. 2015;38(1):90–7.

    Article  CAS  PubMed  Google Scholar 

  131. Verbrugge I, et al. Enhancing the antitumor effects of radiotherapy with combinations of immunostimulatory antibodies. Oncoimmunology. 2012;1(9):1629–31.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Verbrugge I, et al. Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res. 2012;72(13):3163–74.

    Article  CAS  PubMed  Google Scholar 

  133. Twyman-Saint Victor C, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520(7547):373–7.

    Article  CAS  PubMed  Google Scholar 

  134. Tang C, et al. Combining radiation and immunotherapy: a new systemic therapy for solid tumors? Cancer Immunol Res. 2014;2(9):831–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Okwan-Duodu D, et al. Role of radiation therapy as immune activator in the era of modern immunotherapy for metastatic malignant melanoma. Am J Clin Oncol. 2015;38(1):119–25.

    Article  CAS  PubMed  Google Scholar 

  136. Seyedin SN, Tang C, Welsh JW. Author's view: radiation and immunotherapy as systemic therapy for solid tumors. Oncoimmunology. 2015;4(3):e986402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Barbee MS, et al. Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology. Ann Pharmacother. 2015;49(8):907–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges Drs. Tom Budd, Dale Shepard, and Charis Eng for helpful discussions at our Cleveland Clinic Sarcoma seminars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Anderson M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anderson, P.M. (2017). Immune Therapy for Sarcomas. In: Naing, A., Hajjar, J. (eds) Immunotherapy. Advances in Experimental Medicine and Biology, vol 995. Springer, Cham. https://doi.org/10.1007/978-3-319-53156-4_6

Download citation

Publish with us

Policies and ethics