Skip to main content

Spatiotemporal Models of the Asymmetric Division Cycle of Caulobacter crescentus

Part of the Results and Problems in Cell Differentiation book series (RESULTS,volume 61)

Abstract

The spatial localization of proteins within the cytoplasm of bacteria is an underappreciated but critical aspect of cell cycle regulation for many prokaryotes. In Caulobacter crescentus—a model organism for the study of asymmetric cell reproduction in prokaryotes—heterogeneous localization of proteins has been identified as the underlying cause of asymmetry in cell morphology, DNA replication, and cell division. However, significant questions remain. Firstly, the mechanisms by which proteins localize in the organelle-free prokaryotic cytoplasm remain obscure. Furthermore, how variations in the spatial and temporal dynamics of cell fate determinants regulate signaling pathways and orchestrate the complex programs of asymmetric cell division and differentiation are subjects of ongoing research. In this chapter, we review current efforts in investigating these two questions. We describe how mathematical models of spatiotemporal protein dynamics are being used to generate and test competing hypotheses and provide complementary insight about the control mechanisms that regulate asymmetry in protein localization and cell division.

Keywords

  • Histidine Kinase
  • Asymmetric Division
  • Asymmetric Cell Division
  • Spatiotemporal Model
  • Turing Pattern

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-53150-2_2
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-53150-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9

References

  • Aaron M, Charbon G, Lam H, Schwarz H, Vollmer W, Jacobs-Wagner C (2007) The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol Microbiol 64:938–952

    CAS  CrossRef  PubMed  Google Scholar 

  • Abel S, Chien P, Wassmann P, Schirmer T, Kaever V, Laub MT, Baker TA, Jenal U (2011) Regulatory cohesion of cell cycle and cell differentiation through interlinked phosphorylation and second messenger networks. Mol Cell 43:550–560

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Aldridge P, Paul R, Goymer P, Rainey P, Jenal U (2003) Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol 47:1695–1708

    CAS  CrossRef  PubMed  Google Scholar 

  • Angelastro PS, Sliusarenko O, Jacobs-Wagner C (2010) Polar localization of the CckA histidine kinase and cell cycle periodicity of the essential master regulator CtrA in Caulobacter crescentus. J Bacteriol 192:539–552

    CAS  CrossRef  PubMed  Google Scholar 

  • Ausmees N, Jacobs-Wagner C (2003) Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus. Annu Rev Microbiol 57:225–247

    CAS  CrossRef  PubMed  Google Scholar 

  • Beaufay F, De Bolle X, Hallez R (2016) Metabolic control of cell division in α-proteobacteria by a NAD-dependent glutamate dehydrogenase. Commun Integr Biol 9:e1125052

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Boutte CC, Henry JT, Crosson S (2012) ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus. J Bacteriol 194:28–35

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bowman GR, Comolli LR, Zhu J, Eckart M, Koenig M, Downing KH, Moerner WE, Earnest T, Shapiro L (2008) A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134:945–955

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bowman GR, Comolli LR, Gaietta GM, Fero M, Hong S-H, Jones Y, Lee JH, Downing KH, Ellisman MH, McAdams HH, Shapiro L (2010) Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function. Mol Microbiol 76:173–189

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Briegel A, Ding HJ, Li Z, Werner J, Gitai Z, Dias DP, Jensen RB, Jensen GJ (2008) Location and architecture of the Caulobacter crescentus chemoreceptor array. Mol Microbiol 69:30–41

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Brilli M, Fondi M, Fani R, Mengoni A, Ferri L, Bazzicalupo M, Biondi EG (2010) The diversity and evolution of cell cycle regulation in alpha-proteobacteria: a comparative genomic analysis BMC. Syst Biol 4:52

    Google Scholar 

  • Charbon G, Cabeen MT, Jacobs-Wagner C (2009) Bacterial intermediate filaments: in vivo assembly, organization, and dynamics of crescentin. Genes Dev 23:1131–1144

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Chen JC, Hottes AK, McAdams HH, McGrath PT, Viollier PH, Shapiro L (2006) Cytokinesis signals truncation of the PodJ polarity factor by a cell cycle-regulated protease. Eur Mol Biol Organ J 25:377–386

    CAS  CrossRef  Google Scholar 

  • Chen YE, Tsokos CG, Biondi EG, Perchuk BS, Laub MT (2009) Dynamics of two Phosphorelays controlling cell cycle progression in Caulobacter crescentus. J Bacteriol 191:7417–7429

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Chen YE, Tropini C, Jonas K, Tsokos CG, Huang KC, Laub MT (2011) Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium. Proc Natl Acad Sci USA 108:1052–1057

    CAS  CrossRef  PubMed  Google Scholar 

  • Childers WS, Xu Q, Mann TH, Mathews II, Blair JA, Deacon AM, Shapiro L (2014) Cell fate regulation governed by a repurposed bacterial histidine kinase. PLoS Biol 12:e1001979

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Christen B, Fero MJ, Hillson NJ, Bowman G, Hong S-H, Shapiro L, McAdams HH (2010) High-throughput identification of protein localization dependency networks. Proc Natl Acad Sci USA 107:4681–4686

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Curtis PD, Brun YV (2010) Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol Mol Biol Rev 74:13–41

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Curtis PD, Quardokus EM, Lawler ML, Guo X, Klein D, Chen JC, Arnold RJ, Brun YV (2012) The scaffolding and signalling functions of a localization factor impact polar development. Mol Microbiol 84:1–24

    CrossRef  Google Scholar 

  • Daniels BR, Perkins EM, Dobrowsky TM, Sun SX, Wirtz D (2009) Asymmetric enrichment of PIE-1 in the Caenorhabditis elegans zygote mediated by binary counterdiffusion. J Cell Biol 184:473–479

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Daniels BR, Dobrowsky TM, Perkins EM, Sun SX, Wirtz D (2010) MEX-5 enrichment in the C. elegans early embryo mediated by differential diffusion. Development 137:2579–2585

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • dos Santos VT, Bisson-Filho AW, Gueiros-Filho FJ (2012) DivIVA-mediated polar localization of ComN, a posttranscriptional regulator of bacillus subtilis. J Bacteriol 194:3661–3669

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ebersbach G, Briegel A, Jensen GJ, Jacobs-Wagner C (2008) A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter. Cell 134:956–968

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    CAS  CrossRef  PubMed  Google Scholar 

  • Gitai Z, Dye NA, Reisenauer A, Wachi M, Shapiro L (2005) MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120:329–341

    CAS  CrossRef  PubMed  Google Scholar 

  • Goldberg MB, Bârzu O, Parsot C, Sansonetti PJ (1993) Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement. J Bacteriol 175:2189–2196

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Goley ED, Iniesta AA, Shapiro L (2007) Cell cycle regulation in Caulobacter: location, location, location. J Cell Sci 120:3501–3507

    CAS  CrossRef  PubMed  Google Scholar 

  • Goley ED, Yeh YC, Hong SH, Fero MJ, Abeliuk E, Mcadams HH, Shapiro L (2011) Assembly of the Caulobacter cell division machine. Mol Microbiol 80:1680–1698

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gora KG, Cantin A, Wohlever M, Joshi KK, Perchuk BS, Chien P, Laub MT (2013) Regulated proteolysis of a transcription factor complex is critical to cell cycle progression in Caulobacter crescentus. Mol Microbiol 87:1277–1289

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hale CA, Meinhardt H, de Boer PA (2001) Dynamic localization cycle of the cell division regulator MinE in Escherichia coli. EMBO J 20:1563–1572

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hallez R, Bellefontaine A-F, Letesson J-J, De Bolle X (2004) Morphological and functional asymmetry in alpha-proteobacteria. Trends Microbiol 12:361–365

    CAS  CrossRef  PubMed  Google Scholar 

  • Henry JT, Crosson S (2013) Chromosome replication and segregation govern the biogenesis and inheritance of inorganic polyphosphate granules. Mol Biol Cell 24:3177–3186

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hinz AJ, Larson DE, Smith CS, Brun YV (2003) The Caulobacter crescentus polar organelle development protein PodJ is differentially localized and is required for polar targeting of the PleC development regulator. Mol Microbiol 47:929–941

    CAS  CrossRef  PubMed  Google Scholar 

  • Howard M, Kruse K (2005) Cellular organization by self-organization: mechanisms and models for Min protein dynamics. J Cell Biol 168:533–536

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Huitema E, Pritchard S, Matteson D, Radhakrishnan SK, Viollier PH (2006) Bacterial birth scar proteins mark future flagellum assembly site. Cell 124:1025–1037

    CAS  CrossRef  PubMed  Google Scholar 

  • Iniesta AA, McGrath PT, Reisenauer A, McAdams HH, Shapiro L (2006) A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression. Proc Natl Acad Sci USA 103:10935–10940

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Iyer-Biswas S, Wright CS, Henry JT, Lo K, Burov S, Lin Y, Crooks GE, Crosson S, Dinner AR, Scherer NF (2014) Scaling laws governing stochastic growth and division of single bacterial cells. Proc Natl Acad Sci USA 111:15912–15917

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Jenal U, Galperin MY (2009) Single domain response regulators: molecular switches with emerging roles in cell organization and dynamics. Curr Opin Microbiol 12:152–160

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Jin SK, Sun SX (2009) Morphology of Caulobacter crescentus and the mechanical role of crescentin. Biophys J 96:L47–L49

    CrossRef  Google Scholar 

  • Knoblich JA (2014) Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mol Cell Biol 11:849–860. Europe PMC Funders Group

    CrossRef  Google Scholar 

  • Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329:1616–1620

    CAS  CrossRef  PubMed  Google Scholar 

  • Kühn J, Briegel A, Mörschel E, Kahnt J, Leser K, Wick S, Jensen GJ, Thanbichler M (2010) Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J 29:327–339

    CrossRef  PubMed  Google Scholar 

  • Kunche S, Yan H, Calof AL, Lowengrub JS, Lander AD (2016) Feedback, lineages and self-organizing morphogenesis. PLOS Comput Biol 12:e1004814

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Laloux G, Jacobs-Wagner C (2013) Spatiotemporal control of PopZ localization through cell cycle-coupled multimerization. J Cell Biol 201:827–841

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lam H, Matroule J-Y, Jacobs-Wagner C (2003) The asymmetric spatial distribution of bacterial signal transduction proteins coordinates cell cycle events. Dev Cell 5:149–159

    CAS  CrossRef  PubMed  Google Scholar 

  • Lam H, Schofield WB, Jacobs-Wagner C (2006) A landmark protein essential for establishing and perpetuating the polarity of a bacterial cell. Cell 124:1011–1023

    CAS  CrossRef  PubMed  Google Scholar 

  • Lawler ML, Brun YV (2007) Advantages and mechanisms of polarity and cell shape determination in Caulobacter crescentus. Curr Opin Microbiol 10:630–637

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Crosson S, Scherer NF (2010) Single-gene tuning of Caulobacter cell cycle period and noise, swarming motility, and surface adhesion. Mol Syst Biol 6:445

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Matroule J-Y, Lam H, Burnette DT, Jacobs-Wagner C (2004) Cytokinesis monitoring during development; rapid pole-to-pole shuttling of a signaling protein by localized kinase and phosphatase in Caulobacter. Cell 118:579–590

    CAS  CrossRef  PubMed  Google Scholar 

  • Meinhardt H (1982) Models of biological pattern formation. Research Gate, pp 1–10

    Google Scholar 

  • Meinhardt H, de Boer PA (2001) Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proc Natl Acad Sci USA 98:14202–14207

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Meinhardt H, Gierer A (2000) Pattern formation by local self-activation and lateral inhibition. Bioessays 22:753–760

    CAS  CrossRef  PubMed  Google Scholar 

  • Mitchell D, Smit J (1990) Identification of genes affecting production of the adhesion organelle of Caulobacter crescentus CB2. J Bacteriol 172:5425–5431

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Montero Llopis P, Jackson AF, Sliusarenko O, Surovtsev I, Heinritz J, Emonet T, Jacobs-Wagner C (2010) Spatial organization of the flow of genetic information in bacteria. Nature 466:77–81

    CrossRef  PubMed  Google Scholar 

  • Nevo-Dinur K, Govindarajan S, Amster-Choder O (2012) Subcellular localization of RNA and proteins in prokaryotes. Trends Genet 28:314–322

    CAS  CrossRef  PubMed  Google Scholar 

  • Paul R, Abel S, Wassmann P, Beck A, Heerklotz H, Jenal U (2007) Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. J Biol Chem 282:29170–29177

    CAS  CrossRef  PubMed  Google Scholar 

  • Paul R, Jaeger T, Abel S, Wiederkehr I, Folcher M, Biondi EG, Laub MT, Jenal U (2008) Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate. Cell 133:452–461

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Pierce DL, O’Donnol DS, Allen RC, Javens JW, Quardokus EM, Brun YV (2006) Mutations in DivL and CckA rescue a divJ null mutant of Caulobacter crescentus by reducing the activity of CtrA. J Bacteriol 188:2473–2482

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Poindexter JS (1981) The caulobacters: ubiquitous unusual bacteria. Microbiol Rev 45:123–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ptacin JL, Gahlmann A, Bowman GR, Perez AM, von Diezmann ARS, Eckart MR, Moerner WE, Shapiro L (2014) Bacterial scaffold directs pole-specific centromere segregation. Proc Natl Acad Sci USA 111:E2046–E2055

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Reisinger SJ, Huntwork S, Viollier PH, Ryan KR (2007) DivL performs critical cell cycle functions in caulobacter crescentus independent of kinase activity. J Bacteriol 189:8308–8320

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Rudner DZ, Losick R (2010) Protein subcellular localization in bacteria. Cold Spring Harb Perspect Biol 2:a000307

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Saberi S, Emberly E (2010) Chromosome driven spatial patterning of proteins in bacteria. Briggs JM (ed). PLoS Comput Biol 6:e1000986

    Google Scholar 

  • Sciochetti SA, Ohta N, Newton A (2005) The role of polar localization in the function of an essential Caulobacter crescentus tyrosine kinase. Mol Microbiol 56:1467–1480

    CAS  CrossRef  PubMed  Google Scholar 

  • Segel LA, Jackson JL (1972) Dissipative structure: an explanation and an ecological example. J Theor Biol 37:545–559

    CAS  CrossRef  PubMed  Google Scholar 

  • Shapiro L, McAdams HH, Losick R (2009) Why and how bacteria localize proteins. Science 326:1225–1228

    CAS  CrossRef  PubMed  Google Scholar 

  • Shebelut CW, Guberman JM, Van Teeffelen S, Yakhnina AA, Gitai Z (2010) Caulobacter chromosome segregation is an ordered multistep process. Proc Natl Acad Sci USA 107:14194–14198

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sliusarenko O, Heinritz J, Emonet T, Jacobs-Wagner C (2011) High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol Microbiol 80:612–627

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Steinhauer J, Agha R, Pham T, Varga AW, Goldberg MB (1999) The unipolar Shigella surface protein IcsA is targeted directly to the bacterial old pole: IcsP cleavage of IcsA occurs over the entire bacterial surface. Mol Microbiol 32:367–377

    CAS  CrossRef  PubMed  Google Scholar 

  • Stekhoven DJ, Omasits U, Quebatte M, Dehio C, Ahrens CH (2014) Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism. J Proteomics 99:123–137

    CAS  CrossRef  PubMed  Google Scholar 

  • Stewart RC (2010) Protein histidine kinases: assembly of active sites and their regulation in signaling pathways. Curr Opin Microbiol 13:133–141

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    CAS  CrossRef  PubMed  Google Scholar 

  • Subramanian K, Paul MR, Tyson JJ (2013) Potential role of a bistable histidine kinase switch in the asymmetric division cycle of Caulobacter crescentus. PLoS Comput Biol 9:e1003221

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Subramanian K, Paul MR, Tyson JJ (2014) De novo production of Turing activator generates polarity in pattrn formation. In: Proceedings of the Evry Sping School on Modeling Complex Biological systems in the context of Genomics, Evry, France, pp 131–142

    Google Scholar 

  • Subramanian K, Paul MR, Tyson JJ (2015) Dynamical localization of DivL and PleC in the asymmetric division cycle of Caulobacter crescentus: a theoretical investigation of alternative models. PLoS Comput Biol 11:e1004348

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Takacs CN, Poggio S, Charbon G, Pucheault M, Vollmer W, Jacobs-Wagner C (2010) MreB drives de novo rod morphogenesis in Caulobacter crescentus via remodeling of the cell wall. J Bacteriol 192:1671–1684

    CAS  CrossRef  PubMed  Google Scholar 

  • Thanbichler M (2009) Spatial regulation in Caulobacter crescentus. Curr Opin Microbiol 12:715–721

    CAS  CrossRef  PubMed  Google Scholar 

  • Thanbichler M, Shapiro L (2006a) Chromosome organization and segregation in bacteria. J Struct Biol 156:292–303

    CAS  CrossRef  PubMed  Google Scholar 

  • Thanbichler M, Shapiro L (2006b) MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126:147–162

    CAS  CrossRef  PubMed  Google Scholar 

  • Tsokos CG, Perchuk BS, Laub MT (2011) A dynamic complex of signaling proteins uses polar localization to regulate cell fate asymmetry in Caulobacter crescentus. Dev Cell 20:329–341

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc B Biol Sci 237:37–72

    CrossRef  Google Scholar 

  • Viollier PH, Sternheim N, Shapiro L (2002) Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins. Proc Natl Acad Sci USA 99:13831–13836

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Werner JN, Chen EY, Guberman JM, Zippilli AR, Irgon JJ, Gitai Z (2009) Quantitative genome-scale analysis of protein localization in an asymmetric bacterium. Proc Natl Acad Sci USA 106:7858–7863

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wheeler RT, Shapiro L (1999) Differential localization of two histidine kinases controlling bacterial cell differentiation. Mol Cell 4:683–694

    CAS  CrossRef  PubMed  Google Scholar 

  • Winkler J, Seybert A, König L, Pruggnaller S, Haselmann U, Sourjik V, Weiss M, Frangakis AS, Mogk A, Bukau B (2010) Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO J 29:910–923

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wortinger M, Sackett MJ, Brun YV (2000) CtrA mediates a DNA replication checkpoint that prevents cell division in Caulobacter crescentus. Eur Mol Biol Organ J 19:4503–4512

    CAS  CrossRef  Google Scholar 

  • Wu LJ, Errington J (2003) RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol Microbiol 49:1463–1475

    CAS  CrossRef  PubMed  Google Scholar 

  • Wu J, Ohta N, Zhao J-L, Newton A (1999) A novel bacterial tyrosine kinase essential for cell division and differentiation. Proc Natl Acad Sci USA 96:13068–13073

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wylie D, Stock A, Wong CY, Stock J (1988) Sensory transduction in bacterial chemotaxis involves phosphotransfer between Che proteins. Biochem Biophys Res Commun 151:891–896

    CAS  CrossRef  PubMed  Google Scholar 

  • Yamaichi Y, Bruckner R, Ringgaard S, Moll A, Cameron DE, Briegel A, Jensen GJ, Davis BM, Waldor MK (2012) A multidomain hub anchors the chromosome segregation and chemotactic machinery to the bacterial pole. Genes Dev 26:2348–2360

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work on mathematical models presented in this chapter (Subramanian et al. 2013, 2014, 2015) was funded by the National Science Foundation (Division of Mathematical Sciences-1225160). Ongoing investigation of the Caulobacter crescentus cell cycle is currently being funded by the National Science Foundation grant (MCB-1613741). Subramanian is currently a postdoctoral fellow in the Sorger Lab at Harvard Medical School (Funding no: GM107618).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartik Subramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Subramanian, K., Tyson, J.J. (2017). Spatiotemporal Models of the Asymmetric Division Cycle of Caulobacter crescentus . In: Tassan, JP., Kubiak, J. (eds) Asymmetric Cell Division in Development, Differentiation and Cancer. Results and Problems in Cell Differentiation, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-53150-2_2

Download citation