Skip to main content

Extracellular Regulation of the Mitotic Spindle and Fate Determinants Driving Asymmetric Cell Division

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 61))

Abstract

Stem cells use mode of cell division, symmetric (SCD) versus asymmetric (ACD), to balance expansion with self-renewal and the generation of daughter cells with different cell fates. Studies in model organisms have identified intrinsic mechanisms that govern this process, which involves partitioning molecular components between daughter cells, frequently through the regulation of the mitotic spindle. Research performed in vertebrate tissues is revealing both conservation of these intrinsic mechanisms and crucial roles for extrinsic cues in regulating the frequency of these divisions. Morphogens and positional cues, including planar cell polarity proteins and guidance molecules, regulate key signaling pathways required to organize cell/ECM contacts and spindle pole dynamics. Noncanonical WNT7A/VANGL2 signaling governs asymmetric cell division and the acquisition of cell fates through spindle pole orientation in satellite stem cells of regenerating muscle fibers. During cortical neurogenesis, the same pathway regulates glial cell fate determination by regulating spindle size, independent of its orientation. Sonic hedgehog (SHH) stimulates the symmetric expansion of cortical stem and cerebellar progenitor cells and contributes to cell fate acquisition in collaboration with Notch and Wnt signaling pathways. SLIT2 also contributes to stem cell homeostasis by restricting ACD frequency through the regulation of spindle orientation. The capacity to influence stem cells makes these secreted factors excellent targets for therapeutic strategies designed to enhance cell populations in degenerative disease or restrict cell proliferation in different types of cancers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alman BA (2015) The role of hedgehog signalling in skeletal health and disease. Nat Rev Rheumatol 11(9):552–560

    Article  CAS  PubMed  Google Scholar 

  • Ang ES Jr, Haydar TF, Gluncic V, Rakic P (2003) Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J Neurosci 23(13):5805–5815

    CAS  PubMed  Google Scholar 

  • Ballard MS, Hinck L (2012) A roundabout way to cancer. Adv Cancer Res 114:187–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballard MS, Zhu A, Iwai N, Stensrud M, Mapps A, Postiglione MP, Knoblich JA, Hinck L (2015) Mammary stem cell self-renewal is regulated by Slit2/Robo1 signaling through SNAI1 and mINSC. Cell Rep 13(2):290–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrell V, Cardenas A, Ciceri G, Galceran J, Flames N, Pla R, Nóbrega-Pereira S, García-Frigola C, Peregrín S, Zhao Z, Ma L, Tessier-Lavigne M, Marin O (2012) Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 76(2):338–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briscoe J, Therond PP (2013) The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14(7):416–429

    Article  PubMed  Google Scholar 

  • Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  Google Scholar 

  • Ceron J, Tejedor FJ, Moya F (2006) A primary cell culture of Drosophila postembryonic larval neuroblasts to study cell cycle and asymmetric division. Eur J Cell Biol 85(6):567–575

    Article  CAS  PubMed  Google Scholar 

  • Chenn A, McConnell SK (1995) Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82(4):631–641

    Article  CAS  PubMed  Google Scholar 

  • Clucas J, Valderrama F (2014) ERM proteins in cancer progression. J Cell Sci 127(Pt 2):267–275

    Article  CAS  PubMed  Google Scholar 

  • Dave RK, Ellis T, Toumpas MC, Robson JP, Julian E, Adolphe C, Bartlett PF, Cooper HM, Reynolds BA, Wainwright BJ (2011) Sonic hedgehog and notch signaling can cooperate to regulate neurogenic divisions of neocortical progenitors. PLoS One 6(2):e14680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De A (2011) Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin (Shanghai) 43(10):745–756

    Article  CAS  Google Scholar 

  • Delaunay D, Cortay V, Patti D, Knoblauch K, Dehay C (2014) Mitotic spindle asymmetry: a Wnt/PCP-regulated mechanism generating asymmetrical division in cortical precursors. Cell Rep 6(2):400–414

    Article  CAS  PubMed  Google Scholar 

  • Devenport D (2014) The cell biology of planar cell polarity. J Cell Biol 207(2):171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont NA, Wang YX, Rudnicki MA (2015) Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 142(9):1572–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaiano N, Nye JS, Fishell G (2000) Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26(2):395–404

    Article  CAS  PubMed  Google Scholar 

  • Gauthier-Fisher A, Lin DC, Greeve M, Kaplan DR, Rottapel R, Miller FD (2009) Lfc and Tctex-1 regulate the genesis of neurons from cortical precursor cells. Nat Neurosci 12(6):735–744

    Article  CAS  PubMed  Google Scholar 

  • Gu F, Ma Y, Zhang J, Qin F, Fu L (2015) Function of Slit/Robo signaling in breast cancer. Front Med 9(4):431–436

    Article  PubMed  Google Scholar 

  • Habib SJ, Chen BC, Tsai FC, Anastassiadis K, Meyer T, Betzig E, Nusse R (2013) A localized Wnt signal orients asymmetric stem cell division in vitro. Science 339(6126):1445–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haldipur P, Sivaprakasam I, Periasamy V, Govindan S, Mani S (2015) Asymmetric cell division of granule neuron progenitors in the external granule layer of the mouse cerebellum. Biol Open 4(7):865–872

    Article  PubMed  PubMed Central  Google Scholar 

  • Kibar Z, Vogan KJ, Groulx N, Justice MJ, Underhill DA, Gros P (2001) Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet 28(3):251–255

    Article  CAS  PubMed  Google Scholar 

  • Kieran MW (2014) Targeted treatment for sonic hedgehog-dependent medulloblastoma. Neuro Oncol 16(8):1037–1047. doi:10.1093/neuonc/nou109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komada M, Saitsu H, Kinboshi M, Miura T, Shiota K, Ishibashi M (2008) Hedgehog signaling is involved in development of the neocortex. Development 135(16):2717–2727

    Article  CAS  PubMed  Google Scholar 

  • Komuro H, Yacubova E, Yacubova E, Rakic P (2001) Mode and tempo of tangential cell migration in the cerebellar external granular layer. J Neurosci 21(2):527–540

    CAS  PubMed  Google Scholar 

  • Konno D, Shioi G, Shitamukai A, Mori A, Kiyonari H, Miyata T, Matsuzaki F (2008) Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol 10(1):93–101

    Article  CAS  PubMed  Google Scholar 

  • Kosodo Y, Toida K, Dubreuil V, Alexandre P, Schenk J, Kiyokage E et al (2008) Cytokinesis of neuroepithelial cells can divide their basal process before anaphase. EMBO J 27(23):3151–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Grand F, Jones AE, Seale V, Scime A, Rudnicki MA (2009) Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4(6):535–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luer K, Technau GM (2009) Single cell cultures of Drosophila neuroectodermal and mesectodermal central nervous system progenitors reveal different degrees of developmental autonomy. Neural Dev 4:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Macias H, Hinck L (2012) Mammary gland development. Wiley Interdiscip Rev Dev Biol 1(4):533–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mapelli M, Gonzalez C (2012) On the inscrutable role of Inscuteable: structural basis and functional implications for the competitive binding of NuMA and Inscuteable to LGN. Open Biol 2(8):120102

    Article  PubMed  PubMed Central  Google Scholar 

  • Marlow R, Strickland P, Lee JS, Wu X, Pebenito M, Binnewies M et al (2008) SLITs suppress tumor growth in vivo by silencing Sdf1/Cxcr4 within breast epithelium. Cancer Res 68(19):7819–7827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez C, Cornejo VH, Lois P, Ellis T, Solis NP, Wainwright BJ, Palma V (2013) Proliferation of murine midbrain neural stem cells depends upon an endogenous sonic hedgehog (Shh) source. PLoS One 8(6):e65818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296

    Article  CAS  PubMed  Google Scholar 

  • Morin X, Bellaiche Y (2011) Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev Cell 21(1):102–119

    Article  CAS  PubMed  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Kriegstein AR (2008) Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 508(1):28–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Palma V, Ruiz i Altaba A (2004) Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 131(2):337–345

    Article  CAS  PubMed  Google Scholar 

  • Polesskaya A, Seale P, Rudnicki MA (2003) Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113(7):841–852

    Article  CAS  PubMed  Google Scholar 

  • Robinson GW, Orr BA, Wu G, Gururangan S, Lin T, Qaddoumi I, Packer RJ, Goldman S, Prados MD, Desjardins A, Chintagumpala M, Takebe N, Kaste SC, Rusch M, Allen SJ, Onar-Thomas A, Stewart CF, Fouladi M, Boyett JM, Gilbertson RJ, Curran T, Ellison DW, Gajjar A (2015) Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J Clin Oncol 33(24):2646–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Maltzahn J, Renaud JM, Parise G, Rudnicki MA (2012) Wnt7a treatment ameliorates muscular dystrophy. Proc Natl Acad Sci USA 109(50):20614–20619

    Article  Google Scholar 

  • Wallace VA (1999) Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9(8):445–448

    Article  CAS  PubMed  Google Scholar 

  • Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22(1):103–114

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Wang M, Wang J, Huang X, Yang R, Gao WQ (2015) Cell division mode change mediates the regulation of cerebellar granule neurogenesis controlled by the sonic hedgehog signaling. Stem Cell Rep 5(5):816–828

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH: GMI-098897 R01 to LH and HGRI-R25HG006836 predoctoral support to PS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay Hinck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Smith, P., Azzam, M., Hinck, L. (2017). Extracellular Regulation of the Mitotic Spindle and Fate Determinants Driving Asymmetric Cell Division. In: Tassan, JP., Kubiak, J. (eds) Asymmetric Cell Division in Development, Differentiation and Cancer. Results and Problems in Cell Differentiation, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-53150-2_16

Download citation

Publish with us

Policies and ethics