Eye Movements: Parameters, Mechanisms, and Active Vision

Chapter

Abstract

Human eye movements are essential for visual perception, as the physiological structure of the eyes limits high acuity and colorful vision to a small fraction of the retina. Measuring the dynamic interplay of fixations (i.e., the eyes are stable relative to an object of interest) and saccades (i.e., the eyes are directed to a new target) makes possible fundamental insights into the organization of vision. A complex interaction of several types of eye movements is required when performing different tasks, such as orienting in space, identifying objects, or interacting with persons. Here, we discuss the characteristics of fixations and saccades in the context of active vision, with particular focus on the relationship between the two parameters. Analyzing the duration of fixations and the amplitude of saccades during everyday activities can reveal insights into the processing of visual information, allowing an understanding of what details of the environment receive attention. In addition, by considering fixations and saccades in combination, it can be determined how such details were processed within the context of ongoing activities.

Keywords

Eye fixations Saccades Attention Cognitive mechanisms Active vision 

References

  1. 1.
    Schifferstein H. The perceived importance of sensory modalities in product usage: a study of self-reports. Acta Psychol (Amst). 2006;121(1):41–64.CrossRefGoogle Scholar
  2. 2.
    Fenko A, Otten JJ, HNJ S. Describing product experience in different languages: the role of sensory modalities. J Pragmat. 2010;42(12):3314–27.CrossRefGoogle Scholar
  3. 3.
    Stadtlander LM, Murdoch LD. Frequency of occurrence and rankings for touch-related adjectives. Behav Res Methods Instrum Comput. 2000;32(4):579–87.PubMedCrossRefGoogle Scholar
  4. 4.
    Hayhoe MM, Ballard DH. Eye movements in natural behavior. Trends Cogn Sci. 2005;9(4):188–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Findlay JM. Active vision: visual activity in everday life. Curr Biol. 1998;8(18):R640–R2.PubMedCrossRefGoogle Scholar
  6. 6.
    Henderson JM. Regarding scenes. Curr Dir Psychol Sci. 2007;16(4):219–22.CrossRefGoogle Scholar
  7. 7.
    Aloimonos J, Weiss I, Bandyopadhyay A. Active vision. Int J Comput Vis. 1987;1(4):333–56.CrossRefGoogle Scholar
  8. 8.
    Matin E. Saccadic suppression: a review and an analysis. Psychol Bull. 1974;81(12):899–917.PubMedCrossRefGoogle Scholar
  9. 9.
    Rayner K. Eye movements and attention in reading, scene perception, and visual search. Q J Exp Psychol. 2009;62(8):1457–506.CrossRefGoogle Scholar
  10. 10.
    Klein C, Ettinger U. A hundred years of eye movement research in psychiatry. Brain Cogn. 2008;68(3):215–8. Epub 2008/10/07PubMedCrossRefGoogle Scholar
  11. 11.
    Andrews TJ, Coppola DM. Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments. Vision Res. 1999;39(17):2947–53.PubMedCrossRefGoogle Scholar
  12. 12.
    Vertegaal R, Shell JS, Chen D, Mamuji A. Designing for augmented attention: towards a framework for attentive user interfaces. Comput Hum Behav. 2006;22(4):771–89.CrossRefGoogle Scholar
  13. 13.
    Vertegaal R, Velichkovsky BM, Van der Veer G. Catching the eye: management of joint attention in cooperative work. ACM SIGCHI Bull. 1997;29(4):87–99.CrossRefGoogle Scholar
  14. 14.
    Tamura Y, Sugi M, Arai T, Ota J. Attentive deskwork support system. J Adv Comput Intell Intell Informatics. 2010;14(7):758–69.CrossRefGoogle Scholar
  15. 15.
    Wundt W. Grundriss der Psychologie [Outlines of psychology]. Leipzig: Wilhelm Engelmann; 1897.Google Scholar
  16. 16.
    Bonhage CE, Mueller JL, Friederici AD, Fiebach CJ. Combined eye tracking and fMRI reveals neural basis of linguistic predictions during sentence comprehension. Cortex. 2015;68:33–47.PubMedCrossRefGoogle Scholar
  17. 17.
    Kafkas A, Montaldi D. Striatal and midbrain connectivity with the hippocampus selectively boosts memory for contextual novelty. Hippocampus. 2015;25(11):1262–73.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Richlan F, Gagl B, Hawelka S, Braun M, Schurz M, Kronbichler M, et al. Fixation-related fMRI analysis in the domain of reading research: using self-paced eye movements as markers for hemodynamic brain responses during visual letter string processing. Cereb Cortex. 2014;24(10):2647–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Velichkovsky BM. Heterarchy of cognition: the depths and the highs of a framework for memory research. Memory. 2002;10(5/6):405–19.PubMedCrossRefGoogle Scholar
  20. 20.
    Ackerman JS. Leonardo’s eye. J Warburg Courtauld Inst. 1978;41:108–46.CrossRefGoogle Scholar
  21. 21.
    Wade NJ, Tatler BW. The moving tablet of the eye: the origins of modern eye movement research. Oxford: Oxford University Press; 2005.CrossRefGoogle Scholar
  22. 22.
    Roy JE, Cullen KE. Selective processing of vestibular reafference during self-generated head motion. J Neurosci. 2001;21(6):2131–42.PubMedGoogle Scholar
  23. 23.
    Duchowski AT, Medlin E, Cournia N, Murphy H, Gramopadhye A, Nair S, et al. 3-D eye movement analysis. Behav Res Methods Instrum Comput. 2002;34(4):573–91.PubMedCrossRefGoogle Scholar
  24. 24.
    Chokron S, Brickman AM, Wei T, Buchsbaum MS. Hemispheric asymmetry for selective attention. Cogn Brain Res. 2000;9:85–90.CrossRefGoogle Scholar
  25. 25.
    Büttner-Ennever JA, AKE H. Anatomical substrates of oculomotor control. Curr Opin Neurobiol. 1997;7(6):872–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Barnes GR. Cognitive processes involved in smooth pursuit eye movements. Brain Cogn. 2008;68(3):309–26. Epub 2008/10/14.PubMedCrossRefGoogle Scholar
  27. 27.
    Thier P, Ilg UJ. The neural basis of smooth-pursuit eye movements. Curr Opin Neurobiol. 2005;15(6):645–52.PubMedCrossRefGoogle Scholar
  28. 28.
    Spering M, Montagnini A. Do we track what we see? Common versus independent processing for motion perception and smooth pursuit eye movements: a review. Vision Res. 2011;51(8):836–52. Epub 2010/10/23.PubMedCrossRefGoogle Scholar
  29. 29.
    Diefendorf AR, Dodge R. An experimental study of the ocular reactions of the insane from photographic records. Brain. 1908;31:451–89.CrossRefGoogle Scholar
  30. 30.
    O’Driscoll GA, Callahan BL. Smooth pursuit in schizophrenia: a meta-analytic review of research since 1993. Brain Cogn. 2008;68(3):359–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Collewijn H, Kowler E. The significance of microsaccades for vision and oculomotor control. J Vis. 2008;8(14):1–21.PubMedCrossRefGoogle Scholar
  32. 32.
    von Helmholtz H. Handbuch der physiologischen Optik. Hamburg: Voss; 1866.Google Scholar
  33. 33.
    Hering E. Über die Grenzen der Sehschärfe. Berichte der Königlichen Sächsischen Gesellschaft der Wissenschaften Mathematisch-Physische Klasse. 1899;20:16–24.Google Scholar
  34. 34.
    Averill HI, Weymouth FW. Visual perception and the retinal mosaic, II. The influence of eye movements on the displacement threshold. J Comp Psychol. 1925;5:147–76.CrossRefGoogle Scholar
  35. 35.
    Riggs LA, Ratliff F. The effects of counteracting the normal movements of the eye. J Opt Soc Am. 1952;42:782–3.CrossRefGoogle Scholar
  36. 36.
    Zuber BL, Stark L. Microsaccades and velocity–amplitude relationship for saccadic eye movements. Science. 1965;150(3702):1459–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Cornsweet TN. Determination of the stimuli for involuntary drifts and saccadic eye movements. J Opt Soc Am. 1956;46(11):987–93.PubMedCrossRefGoogle Scholar
  38. 38.
    Steinman RM, Cunitz RJ, Timberla GT, Herman M. Voluntary control of microsaccades during maintained monocular fixation. Science. 1967;155(3769):1577–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Bridgeman B, Palca J. The role of microsaccades in high acuity observational tasks. Vision Res. 1980;20(9):813–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Engbert R. Microsaccades: a microcosm for research on oculomotor control, attention, and visual perception. Prog Brain Res. 2006;154:177–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Martinez-Conde S. Fixational eye movements in normal and pathological vision. Prog Brain Res. 2006;154:151–76.PubMedCrossRefGoogle Scholar
  42. 42.
    Rolfs M. Microsaccades: small steps on a long way. Vision Res. 2009;49:2415–41.PubMedCrossRefGoogle Scholar
  43. 43.
    Martinez-Conde S, Macknik SL, Troncoso XG, Dyar TA. Microsaccades counteract visual fading during fixation. Neuron. 2006;49(2):297–305.PubMedCrossRefGoogle Scholar
  44. 44.
    Rucci M, Iovin R, Poletti M, Santini F. Miniature eye movements enhance fine spatial detail. Nature. 2007;447(7146):851–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Rucci M, Desbordes G. Contributions of fixational eye movements to the discrimination of briefly presented stimuli. J Vis. 2003;3(11):852–64.PubMedCrossRefGoogle Scholar
  46. 46.
    Laubrock J, Engbert R, Kliegl R. Microsaccade dynamics during covert attention. Vision Res. 2005;45(6):721–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Laubrock J, Engbert R, Rolfs M, Kliegl R. Microsaccades are an index of covert attention: commentary on Horowitz, Fine, Fencsik, Yurgenson, and Wolfe (2007). Psychol Sci. 2007;18(4):364–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Steinman RM. Gaze control under natural conditions. In: Chalupa LM, Werner JS, editors. The visual neurosciences. Cambridge: MIT Press; 2003. p. 1339–56.Google Scholar
  49. 49.
    Egana JI, Devia C, Mayol R, Parrini J, Orellana G, Ruiz A, et al. Small saccades and image complexity during free viewing of natural images in schizophrenia. Front Psych. 2013;4:37.Google Scholar
  50. 50.
    Martinez-Conde S, Otero-Millan J, Macknik SL. The impact of microsaccades on vision: towards a unified theory of saccadic function. Nat Rev Neurosci. 2013;14(2):83–96.PubMedCrossRefGoogle Scholar
  51. 51.
    Bahill AT, Clark MR, Stark L. The main sequence, a tool for studying human eye movements. Math Biosci. 1975;24(3–4):191–204.CrossRefGoogle Scholar
  52. 52.
    Otero-Millan J, Troncoso XG, Macknik SL, Serrano-Pedraza I, Martinez-Conde S. Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator. J Vis. 2008;8(14):21.1–18.CrossRefGoogle Scholar
  53. 53.
    Buswell GT. How people look at pictures. Chicago: University of Chicago Press; 1935.Google Scholar
  54. 54.
    Yarbus AL. Eye movements and vision. New York: Plenum Press; 1967.CrossRefGoogle Scholar
  55. 55.
    Brown AC. The relation between the movements of the eyes and the movements of the head. London: Henry Frowde; 1895.Google Scholar
  56. 56.
    Rayner K. Eye movements in reading and information processing: 20 years of research. Psychol Bull. 1998;124(3):372–422.PubMedCrossRefGoogle Scholar
  57. 57.
    Velichkovsky BM, Sprenger A, Pomplun M. Auf dem Weg zur Blickmaus: Die Beeinflussung der Fixationsdauer durch kognitive und kommunikative Aufgaben. In: Liskowsky R, Velichkovsky BM, Wünschmann W, editors. Usability engineering. Stuttgart: Teubner; 1997.Google Scholar
  58. 58.
    Velichkovsky BM. Levels of processing: validating the concept. In: Naveh-Benjamin M, Moscovitch M, Roediger III HL, editors. Perspectives on human memory and cognitive aging: essays in honour of fergus IM craik. Philadelphia: Psychology Press; 2001. p. 48–71.Google Scholar
  59. 59.
    FIM C, Lockhart RS. Levels of processing: a framework of memory research. J Verbal Learn Verbal Behav. 1972;11:671–84.CrossRefGoogle Scholar
  60. 60.
    Morrison RE. Manipulation of stimulus onset delay in reading: evidence for parallel programming of saccades. J Exp Psychol Hum Percept Perform. 1984;10(5):667–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Rayner K, Pollatsek A. Eye-movement control during reading: evidence for direct control. Q J Exp Psychol A Hum Exp Psycol. 1981;33:351–73.CrossRefGoogle Scholar
  62. 62.
    Vaughan J. Control of fixation duration in visual search and memory search: another look. J Exp Psychol Hum Percept Perform. 1982;8(5):709–23.PubMedCrossRefGoogle Scholar
  63. 63.
    Loftus GR. Picture perception: effects of luminance on available information and information-extraction rate. J Exp Psychol Gen. 1985;114(3):342–56.PubMedCrossRefGoogle Scholar
  64. 64.
    Mannan SK, Ruddock KH, Wooding DS. Automatic control of saccadic eye movements made in visual inspection of briefly presented 2-D images. Spat Vis. 1995;9(3):363–86.PubMedCrossRefGoogle Scholar
  65. 65.
    Parkhurst DJ, Culurciello E, Niebur E. Evaluating variable resolution displays with visual search: task performance and eye movements. In: Duchowski AT, editor. Proceedings of the symposium on eye tracking research and applications. New York: ACM Press; 2000. p. 105–9.CrossRefGoogle Scholar
  66. 66.
    van Diepen PMJ, d’Ydewalle G. Early peripheral and foveal processing in fixations during scene perception. Vis Cogn. 2003;10(1):79–100.CrossRefGoogle Scholar
  67. 67.
    Henderson JM, Weeks PA, Hollingworth A. The effects of semantic consistency on eye movements during complex scene viewing. J Exp Psychol Hum Percept Perform. 1999;25(1):210–28.CrossRefGoogle Scholar
  68. 68.
    Over EAB HITC, BNS V, Erkelens CJ. Coarse-to-fine eye movement strategy in visual search. Vision Res. 2007;47(17):2272–80.CrossRefGoogle Scholar
  69. 69.
    Henderson JM, Smith TJ. How are eye fixation durations controlled during scene viewing? Further evidence from a scene onset delay paradigm. Vis Cogn. 2009;17(6–7):1055–82.CrossRefGoogle Scholar
  70. 70.
    Henderson JM, Pierce GL. Eye movements during scene viewing: evidence for mixed control of fixation durations. Psychon Bull Rev. 2008;15(3):566–73.PubMedCrossRefGoogle Scholar
  71. 71.
    Nuthmann A, Smith TJ, Engbert R, Henderson JM. CRISP: a computational model of fixation durations in scene viewing. Psychol Rev. 2010;117(2):382–405.PubMedCrossRefGoogle Scholar
  72. 72.
    Treisman A, Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980;12(1):97–136.PubMedCrossRefGoogle Scholar
  73. 73.
    Treisman A. How the deployment of attention determines what we see. Vis Cogn. 2006;14(4–8):411–43.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Itti L, Koch C. Computational modeling of visual attention. Nat Rev Neurosci. 2001;2(3):194–203.PubMedCrossRefGoogle Scholar
  75. 75.
    Parkhurst DJ, Law K, Niebur E. Modeling the role of salience in the allocation of overt visual attention. Vision Res. 2002;42(1):107–23.PubMedCrossRefGoogle Scholar
  76. 76.
    Torralba A, Oliva A, Castelhano MS, Henderson JM. Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol Rev. 2006;113(4):766–86.PubMedCrossRefGoogle Scholar
  77. 77.
    Underwood G, Foulsham T, Humphrey K. Saliency and scan patterns in the inspection of real-world scenes: eye movements during encoding and recognition. Vis Cogn. 2009;17(6–7):812–34.CrossRefGoogle Scholar
  78. 78.
    Foulsham T, Underwood G. What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. J Vis. 2008;8(2):6.1–17.CrossRefGoogle Scholar
  79. 79.
    Tatler BW. The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. J Vis. 2007;7(14):4.1–17.CrossRefGoogle Scholar
  80. 80.
    Einhäuser W, Rutishauser U, Koch C. Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. J Vis. 2008;8(2):2.1–19.CrossRefGoogle Scholar
  81. 81.
    Hayhoe MM. Vision using routines: a functional account of vision. Vis Cogn. 2000;7(1–3):43–64.CrossRefGoogle Scholar
  82. 82.
    Land MF. Vision, eye movements, and natural behavior. Vis Neurosci. 2009;26(1):51–62.PubMedCrossRefGoogle Scholar
  83. 83.
    Hwang AD, Wang HC, Pomplun M. Semantic guidance of eye movements in real-world scenes. Vision Res. 2011;51(10):1192–205.PubMedCrossRefGoogle Scholar
  84. 84.
    Phillips ML, David AS. Visual scan paths are abnormal in deluded schizophrenics. Neuropsychologia. 1997;35(1):99–105.PubMedCrossRefGoogle Scholar
  85. 85.
    Sprenger A, Friedrich M, Nagel M, Schmidt CS, Moritz S, Lencer R. Advanced analysis of free visual exploration patterns in schizophrenia. Front Psych. 2013;4:737.Google Scholar
  86. 86.
    Land MF. Motion and vision: why animals move their eyes. J Comp Physiol A Sens Neural Behav Physiol. 1999;185(4):341–52.CrossRefGoogle Scholar
  87. 87.
    Latour PL. Visual threshold during eye movements. Vision Res. 1962;2(3):261–2.CrossRefGoogle Scholar
  88. 88.
    Diamond MR, Ross J, Morrone MC. Extraretinal control of saccadic suppression. J Neurosci. 2000;20(9):3449–55.PubMedGoogle Scholar
  89. 89.
    Loschky LC, Wolverton GS. How late can you update gaze-contingent multiresolutional displays without detection? ACM Trans Multimed Comput Commun Appl. 2007;3(4):1–10.CrossRefGoogle Scholar
  90. 90.
    Irwin DE, Gordon RD. Eye movements, attention and trans-saccadic memory. Vis Cogn. 1998;5(1–2):127–55.Google Scholar
  91. 91.
    Smyrnis N. Metric issues in the study of eye movements in psychiatry. Brain Cogn. 2008;68(3):341–58. Epub 2008/10/10PubMedCrossRefGoogle Scholar
  92. 92.
    Everling S, Fischer B. The antisaccade: a review of basic research and clinical studies. Neuropsychologia. 1998;36(9):885–99.PubMedCrossRefGoogle Scholar
  93. 93.
    Land MF. The coordination of rotations of the eyes, head and trunk in saccadic turns produced in natural situations. Exp Brain Res. 2004;159(2):151–60.PubMedCrossRefGoogle Scholar
  94. 94.
    Land MF, Mennie N, Rusted J. The roles of vision and eye movements in the control of activities of daily living. Perception. 1999;28(11):1311–28.PubMedCrossRefGoogle Scholar
  95. 95.
    Haarmeier T. Sakkadische Augenbewegungen in der neurologischen Diagnostik. Neurophysiol Labor. 2010;32(3):146–52.CrossRefGoogle Scholar
  96. 96.
    Viviani P, Berthoz A, Tracey D. The curvature of oblique saccades. Vision Res. 1977;17(5):661–4.PubMedCrossRefGoogle Scholar
  97. 97.
    Godijn R, Theeuwes J. Programming of endogenous and exogenous saccades: evidence for a competitive integration model. J Exp Psychol Hum Percept Perform. 2002;28(5):1039–54.PubMedCrossRefGoogle Scholar
  98. 98.
    Sheliga BM, Riggio L, Rizzolatti G. Spatial attention and eye movements. Exp Brain Res. 1995;105(2):261–75.PubMedCrossRefGoogle Scholar
  99. 99.
    Tipper SP, Howard DV, Houghton G. Behavioral consequences of selection from population codes. In: Monsell S, Driver J, editors. Attention and performance. Cambridge: MIT Press; 2000.Google Scholar
  100. 100.
    Port NL, Wurtz RH. Sequential activity of simultaneously recorded neurons in the superior colliculus during curved saccades. J Neurophysiol. 2003;90:1887–903.PubMedCrossRefGoogle Scholar
  101. 101.
    Fukushima J, Hatta T, Fukushima K. Development of voluntary control of saccadic eye movements. I: age-related changes in normal children. Brain Dev. 2000;22:173–80.PubMedCrossRefGoogle Scholar
  102. 102.
    Fischer B, Ramsberger B. Human express saccades: extremely short reaction times of goal directed eye movements. Exp Brain Res. 1984;57:191–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Kingstone A, Klein RM. What are human express saccades? Percept Psychophys. 1993;54:260–73.PubMedCrossRefGoogle Scholar
  104. 104.
    Saslow MG. Latency for saccadic eye movement. J Opt Soc Am. 1967;57:1030–3.PubMedCrossRefGoogle Scholar
  105. 105.
    Lévy-Schoen A. Determination and latency of oculo-motor response to simultaneous and successive stimuli according to their relative eccentricity. Annee Psychol. 1969;69(2):373–92.CrossRefGoogle Scholar
  106. 106.
    Findlay JM, Walker R. A model of saccade generation based on parallel processing and competitive inhibition. Behav Brain Sci. 1999;22(4):661–721.PubMedGoogle Scholar
  107. 107.
    Walker R, Deubel H, Schneider WX, Findlay JM. Effect of remote distractors on saccade programming: evidence for an extended fixation zone. J Neurophysiol. 1997;78:1108–19.PubMedGoogle Scholar
  108. 108.
    Schwab S, Jost M, Altorfer A. Impaired top-down modulation of saccadic latencies in patients with schizophrenia but not in first-degree relatives. Front Behav Neurosci. 2015;9(44):1–7.Google Scholar
  109. 109.
    Manoach DS, Ketwaroo GA, Polli FE, Thakkar KN, JJS B, Goff DC, et al. Reduced microstructural integrity of the white matter underlying anterior cingulate cortex is associated with increased saccadic latency in schizophrenia. Neuroimage. 2007;37(2):599–610.PubMedCrossRefGoogle Scholar
  110. 110.
    Ramchandran RS, Manoach DS, Cherkasova MV, Lindgren KA, Goff DC, JJS B. The relationship of saccadic peak velocity to latency: evidence for a new prosaccadic abnormality in schizophrenia. Exp Brain Res. 2004;159(1):99–107.PubMedGoogle Scholar
  111. 111.
    Deubel H. Adaptivity of gain and direction in oblique saccades. In: O’Regan JK, Levy-Schoen A, editors. Eye movements: from physiology to cognition. New York: Elsevier/North-Holland; 1987. p. 181–90.CrossRefGoogle Scholar
  112. 112.
    Picard H, Le Seac’h A, Amado I, Gaillard R, Krebs MO, Beauvillain C. Impaired saccadic adaptation in schizophrenic patients with high neurological soft sign scores. Psychiatry Res. 2012;199(1):12–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Hopp J, Fuchs AE. The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog Neurobiol. 2004;72(1):27–53.PubMedCrossRefGoogle Scholar
  114. 114.
    Optican L, Robinson D. Cerebellar dependent adaptive control of primate saccadic system. J Neurophysiol. 1980;44:1058–76.PubMedGoogle Scholar
  115. 115.
    Moschovakis AK. The superior colliculus and eye movement control. Curr Opin Neurobiol. 1996;6(6):811–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Scudder CA, CRS K, Fuchs AF. The brainstem burst generator for saccadic eye movements A modern synthesis. Exp Brain Res. 2002;142(4):439–62.PubMedCrossRefGoogle Scholar
  117. 117.
    Girard B, Berthoz A. From brainstem to cortex: computational models of saccade generation circuitry. Prog Neurobiol. 2005;77:215–51.PubMedCrossRefGoogle Scholar
  118. 118.
    Quaia C, Lefèvre P, Optican LM. Model of the control of saccades by superior colliculus and cerebellum. J Neurophysiol. 1999;82(2):999–1018.PubMedGoogle Scholar
  119. 119.
    Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev. 2000;80(3):953–78.PubMedGoogle Scholar
  120. 120.
    Platt M, Lau B, Glimcher PW. Situating the superior colliculus within the gaze control network. In: Hall WC, Moschovakis A, editors. The superior colliculus new approaches for studying sensorimotor integration. Boca Raton: CRC Press; 2004. p. 1–34.Google Scholar
  121. 121.
    Pierrot-Deseilligny C, Müri RM, Ploner CJ, Gaymard B, Rivaud-Péchoux S. Cortical control of ocular saccades in humans: a model for motricity. Prog Brain Res. 2003;142:3–17.PubMedCrossRefGoogle Scholar
  122. 122.
    Babcock JS, Lipps M, Pelz JB. How people look at pictures before, during, and after scene capture: Buswell revisited. In: Rogowitz BE, Pappas TN, editors. Human vision and electronic imaging V, SPIE Proceedings, 46622002. Bellingham: SPIE; 2000. p. 34–47.Google Scholar
  123. 123.
    Tatler BW, Wade NJ, Kwan H, Findlay JM, Velichkovsky BM. Yarbus, eye movements, and vision. Iperception. 2010;1(1):7–27.PubMedPubMedCentralGoogle Scholar
  124. 124.
    De Angelus M, Pelz JB. Top-down control of eye movements: yarbus revisited. Vis Cogn. 2009;17(6/7):790–811.CrossRefGoogle Scholar
  125. 125.
    Wallman J, Fuchs AF. Saccadic gain modification: visual error drives motor adaptation. J Neurophysiol. 1998;80(5):2405–16.PubMedGoogle Scholar
  126. 126.
    Greene MR, Oliva A. The briefest of glances: the time course of natural scene understanding: research article. Psychol Sci. 2009;20(4):464–72.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    ‘t Hart BM, Vockeroth J, Schumann F, Bartl K, Schneider E, Konig P, et al. Gaze allocation in natural stimuli: comparing free exploration to head-fixed viewing conditions. Vis Cogn. 2009;17(6–7):1132–1158.CrossRefGoogle Scholar
  128. 128.
    Pannasch S, Helmert JR, Velichkovsky BM. Eye tracking and usability research: an introduction to the special issue. J Eye Mov Res. 2008;2(4):1–4.Google Scholar
  129. 129.
    Bernhaupt R, Palanque P, Winckler M, Navarre D. Usability study of multi-modal interfaces using eye-tracking. Lect Notes Comput Sci. 2007;4663:412–24.CrossRefGoogle Scholar
  130. 130.
    Yarbus AL. The motions of the eye in the process of changing points of fixation. Biofizika. 1956;2(1):76–8.Google Scholar
  131. 131.
    Hegdé J. Time course of visual perception: coarse-to-fine processing and beyond. Prog Neurobiol. 2008;84(4):405–39.PubMedCrossRefGoogle Scholar
  132. 132.
    Pieters R, Wedel M. Goal control of attention to advertising: the Yarbus implication. J Consum Res. 2007;34(2):224–33.CrossRefGoogle Scholar
  133. 133.
    Wedel M, Pieters R, Liechty J. Attention switching during scene perception: how goals influence the time course of eye movements across advertisements. J Exp Psychol Appl. 2008;14(2):129–38.PubMedCrossRefGoogle Scholar
  134. 134.
    Pannasch S, Helmert JR, Roth K, Herbold A-K, Walter H. Visual fixation durations and saccadic amplitudes: shifting relationship in a variety of conditions. J Eye Mov Res. 2008;2(2):1–19.Google Scholar
  135. 135.
    Anderson NC, Anderson F, Kingstone A, Bischof WF. A comparison of scanpath comparison methods. Behav Res Methods. 2015;47(4):1377–92.PubMedCrossRefGoogle Scholar
  136. 136.
    Cristino F, Mathot S, Theeuwes J, Gilchrist ID. ScanMatch: a novel method for comparing fixation sequences. Behav Res Methods. 2010;42(3):692–700.PubMedCrossRefGoogle Scholar
  137. 137.
    Mathôt S, Cristino F, Gilchrist ID, Theeuwes J. A simple way to estimate similarity between pairs of eye movement sequences. J Eye Mov Res. 2012;5(1):1–15.Google Scholar
  138. 138.
    Beedie SA, Benson PJ, Giegling I, Rujescu D, St Clair DM. Smooth pursuit and visual scanpaths: independence of two candidate oculomotor risk markers for schizophrenia. World J Biol Psychiatry Off J World Fed Soc Biol Psychiatry. 2012;13(3):200–10.CrossRefGoogle Scholar
  139. 139.
    Loughland C. Visual scanpath dysfunction in first-degree relatives of schizophrenia probands: evidence for a vulnerability marker? Schizophr Res. 2004;67(1):11–21.PubMedCrossRefGoogle Scholar
  140. 140.
    St Clair DM. Atypical scanpaths in schizophrenia: evidence of a trait- or state-dependent phenomenon? J Psychiatry Neurosci. 2011;36(3):150.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Tatler BW, Hayhoe MM, Land MF, Ballard DH. Eye guidance in natural vision: Reinterpreting salience. J Vis. 2011;11(5):1–23. Epub 2011/05/31CrossRefGoogle Scholar
  142. 142.
    Pelz JB, Canosa R, Babcock J, Kucharczyk D, Silver A, Konno D. Portable eyetracking: a study of natural eye movements. In: Rogowitz BE, Pappas TN, editors. Human vision and electronic imaging, Proceedings of the San Jose, CA: SPIE; 2000. p. 566–82.Google Scholar
  143. 143.
    Land MF, Lee DN. Where we look when we steer. Nature. 1994;369:742–4.PubMedCrossRefGoogle Scholar
  144. 144.
    Grundgeiger T, Wurmb T, Happel O. Eye tracking in anesthesiology: literature review, methodological issues, and research topics. Proc Hum Fact Ergon Soc Ann Meet. 2015;59(1):493–7.CrossRefGoogle Scholar
  145. 145.
    Atkins MS, Tien G, RSA K, Meneghetti A, Zheng B. What do surgeons see: capturing and synchronizing eye gaze for surgery applications. Surg Innov. 2013;20(3):241–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Tatler BW. Characterising the visual buffer: real-world evidence for overwriting early in each fixation. Perception. 2001;30(8):993–1006.PubMedCrossRefGoogle Scholar
  147. 147.
    Gidlof K, Wallin A, Dewhurst R, Holmqvist K. Using eye tracking to trace a cognitive process: gaze behaviour during decision making in a natural environment. J Eye Mov Res. 2012;6(1(3)):1–14.Google Scholar
  148. 148.
    Fedota J, Parasuraman R. Neuroergonomics and human error. Theor Issues Ergon Sci. 2010;11(5):402–21.CrossRefGoogle Scholar
  149. 149.
    Parasuraman R. Neuroergonomics: research and practice. Theor Issues Ergon Sci. 2003;4(1):5–20.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PsychologyTechnische Universität DresdenDresdenGermany
  2. 2.Department of Psychology, Engineering Psychology and Applied Cognitive ResearchTechnische Universität DresdenDresdenGermany

Personalised recommendations