Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 97))

Abstract

In the last decades, with the rapid development on the communication, control and computer technologies, the conventional control systems have been evolving to modern networked control systems (NCSs), wherein the control loops are closed through a communication network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.H. Johansson, M. Trngren, L. Nielsen, Vehicle applications of controller area network, in Handbook of Networked and Embedded Control Systems, Part of the series Control Engineering (2005), pp. 741–765

    Google Scholar 

  2. J.K.W. Wong, H. Li, S.W. Wang, Intelligent building research: a review. Autom. Constr. 14, 143–159 (2005)

    Article  Google Scholar 

  3. R.J. Anderson, M.W. Spong, Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34(5), 494–501 (1989)

    Article  MathSciNet  Google Scholar 

  4. Y. Eun, H. Bang, Cooperative control of multiple unmanned aerial vehicles using the potential field theory. J. Aircr. 43(6), 1805–1814 (2006)

    Article  Google Scholar 

  5. R.M. Murray, K.J. Astrom, S.P. Boyd, R.W. Brockett, G. Stein, Control in an information rich world. IEEE Control Syst. Mag. 23(2), 20–33 (2003)

    Article  Google Scholar 

  6. N. Sivashankar, P. Khargonekar, Characterization of the \(L_2\)-induced norm for linear systems with jumps with applications to sampled-data systems. SIAM J. Control Optim. 32, 1128–1150 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Basar, P. Bernard, \(H_\infty \) optimal control and related minimax design problems. A dynamic game approach, in Systems and Control: Foundation and Applications (Birkhauser, Boston, 1995)

    Google Scholar 

  8. S. Xu, T.W. Chen, Robust \(H_\infty \) filtering for uncertain impulsive stochastic systems under sampled measurements. Automatica 39(3), 509–516 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Naghshtabrizi, J.P. Hespanha, A.R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems. Syst. Control Lett. 57(5), 378–385 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. W.H. Chen, W.X. Zheng, Input-to-state stability for networked control systems via an improved impulsive system approach. Automatica 47(4), 789–796 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Briat, A. Seuret, Convex dwell-time characterizations for uncertain linear impulsive systems. IEEE Trans. Autom. Control 57(12), 3241–3246 (2012)

    Article  MathSciNet  Google Scholar 

  12. C. Briat, Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints. Automatica 49(11), 3449–3457 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Mikheev, V. Sobolev, E. Fridman, Asymptotic analysis of digital control systems. Autom. Remote Control 49, 1175–1180 (1988)

    MathSciNet  MATH  Google Scholar 

  14. K. Astrom, B. Wittenmark, Adaptive Control (Addison-Wesley, Reading, MA, 1989)

    Google Scholar 

  15. E. Fridman, Use of models with aftereMect in the problem of design of optimal digital control. Autom. Remote Control 53(10), 1523–1528 (1992)

    Google Scholar 

  16. M. Wu, Y. He, J.H. She, G.P. Liu, Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 40(8), 1435–1439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. He, Q.G. Wang, C. Lin, M. Wu, Delay-range-dependent stability for systems with time-varying delay. Automatica 43(2), 371–376 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. H.Y. Shao, New delay-dependent stability criteria for systems with interval delay. Automatica 45(3), 744–749 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Park, J.W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1), 235–238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Seureta, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems. Automatica 49(9), 2860–2866 (2013)

    Article  MathSciNet  Google Scholar 

  21. K. Liu, E. Fridman, Wirtinger’s inequality and Lyapunov-based sampled-data stabilization. Automatica 48(1), 102–108 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Fridman, A refined input delay approach to sampled-data control. Automatica 46(2), 421–427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Z.G. Wu, P. Shi, H.Y. Su, J. Chu, Local synchronization of chaotic neural networks with sampled-data and saturating actuators. IEEE Trans. Cybern. 44(12), 2635–2645 (2014)

    Article  Google Scholar 

  24. Y. Liu, S.M. Lee, Stability and stabilization of Takgsi-Sugeno fuzzy systems via sampled-data and state quantized controller. IEEE Trans. Fuzzy Syst. (2016)

    Google Scholar 

  25. Y.S. Suh, Stability and stabilization of nonuniform sampling systems. Automatica 44(12), 3222–3226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Fujioka, Stability analysis for a class of networked/embedded control systems: output feedback case, in Proceedings of the 17th IFAC World Congress, Seoul, Korea, 2008, pp. 4210–4215

    Google Scholar 

  27. H. Fujioka, A discrete-time approach to stability analysis of systems with aperiodic sample-and-hold devices. IEEE Trans. Autom. Control 54(10), 2440–2445 (2009)

    Article  MathSciNet  Google Scholar 

  28. Y. Oishi, H. Fujioka, Stability and stabilization of aperiodic sampled-data control systems using robust linear matrix inequalities. Automatica 46(8), 1327–1333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. C.Y. Kao, H. Fujioka, On stability of systems with aperiodic sampling devices. IEEE Trans. Autom. Control 58(8), 2085–2090 (2013)

    Article  MathSciNet  Google Scholar 

  30. D.H. Lee, Y.H. Joo, A note on sampled-data stabilization of LTI systems with aperiodic sampling. IEEE Trans. Autom. Control 60(10), 2746–2751 (2015)

    Article  MathSciNet  Google Scholar 

  31. A. Seuret, M.M. Peet, Stability analysis of sampled-data systems using sum of squares. IEEE Trans. Autom. Control 58(6), 1620–1625 (2013)

    Article  MathSciNet  Google Scholar 

  32. W.A. Zhang, A.D. Liu, K.X. Xing, Stability analysis and stabilization of aperiodic sampled-data systems based on a switched system approach. J. Frankl. Inst. 353, 955–970 (2016)

    Article  MathSciNet  Google Scholar 

  33. R.Y. Ling, L. Yu, D. Zhang, W.A. Zhang, A Markovian system approach to distributed \(H_\infty \) filtering for sensor networks with stochastic sampling. J. Frankl. Inst. 351(11), 4998–5014 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. R.Y. Ling, J.T. Chen, W.A. Zhang, D. Zhang, Energy-efficient \(H_\infty \) filtering over wireless networked systems-a Markovian system approach. Signal Process. 120, 495–502 (2016)

    Article  Google Scholar 

  35. L.X. Zhang, E.K. Boukas, Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities. Automatica 45(2), 463–468 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Kalman, Nonlinear aspects of sampled-data control systems, in Proceedings of the Symposium on Nonlinear Circuit Analysis, vol. 6 (1956), pp. 273–313

    Google Scholar 

  37. D.F. Delchamps, Stabilizing a linear system with quantized state feedback. IEEE Trans. Autom. Control 35(8), 916–924 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  38. N. Elia, S. Mitter, Stabilization of linear systems with limited information. IEEE Trans. Autom. Control 46(9), 1384–1400 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. M.Y. Fu, L.H. Xie, The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50(11), 1698–1711 (2005)

    Article  MathSciNet  Google Scholar 

  40. M.Y. Fu, L.H. Xie, Finite-level quantized feedback control for linear systems. IEEE Trans. Autom. Control 54(5), 1165–1170 (2009)

    Article  MathSciNet  Google Scholar 

  41. Y. Ishido, K. Takaba, D.E. Quevedo, Stability analysis of networked control systems subject to packet-dropouts and finite-level quantization. Syst. Control Lett. 60(5), 325–332 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Y.G. Niu, T.G. Jia, X.Y. Wang, F.W. Yang, Output-feedback control design for NCSs subject to quantization and dropout. Inf. Sci. 179(21), 3804–3813 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. F. Rasool, S.K. Nguang, D. Huang, L.X. Zhang. Quantized robust \(H_\infty \) control of discrete-time systems with random communication delays, in Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China, 16–18 December 2009

    Google Scholar 

  44. M.S. Mahmoud, M.H. Baig, Networked feedback control for systems with quantization and non-stationary random delays. IMA J. Math. Control Inf. 32, 119–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. R.W. Brockett, D. Liberzon, Quantized feedback stabilization of linear systems. IEEE Trans. Autom. Control 45(7), 1279–1289 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. F. Fagnani, S. Zampieri, Quantized stabilization of linear systems-complexity versus performance. IEEE Trans. Autom. Control 49(9), 1534–1548 (2004)

    Article  MathSciNet  Google Scholar 

  47. D. Liberzon, D. Nesic, Input-to-state stabilization of linear systems with quantized state measurements. IEEE Trans. Autom. Control 52(5), 767–781 (2007)

    Article  MathSciNet  Google Scholar 

  48. C. Peng, Y.C. Tian, Networked \(H_\infty \) control of linear systems with state quantization. Inf. Sci. 177(24), 5763–5774 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. E.G. Tian, D. Yue, C. Peng, Quantized output feedback control for networked control systems. Inf. Sci. 178(12), 2734–2749 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. W. Zhang, M.S. Branicky, S.M. Phillips, Stability of networked control systems stability of networked control system. IEEE Control Syst. 21(1), 84–99 (2001)

    Article  Google Scholar 

  51. D. Yue, Q.L. Han, J. Lam, Network-based robust \(H_\infty \) control of systems with uncertainty. Automatica 41(6), 999–1007 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Lam, H.J. Gao, C.H. Wang, Stability analysis for continuous systems with two additive time-varying delay components. Syst. Control Lett. 56(1), 16–24 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. H.J. Gao, T.W. Chen, J. Lam, A new delay system approach to network-based control. Automatica 44(1), 39–52 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. H.J. Gao, T.W. Chen, \(H_\infty \) estimation for uncertain systems with limited communication capacity. IEEE Trans. Autom. Control 52(11), 2070–2084 (2007)

    Article  MathSciNet  Google Scholar 

  55. H.J. Gao, T.W. Chen, Network-based \(H_\infty \) output tracking control. IEEE Trans. Autom. Control 53(3), 655–667 (2008)

    Article  MathSciNet  Google Scholar 

  56. J.L. Xiong, J. Lam, Stabilization of networked control systems with a logic ZOH. IEEE Trans. Autom. Control 54(2), 358–363 (2009)

    Article  MathSciNet  Google Scholar 

  57. H. Zhang, J. Yang, C.Y. Su, T-S fuzzy-model-based robust \(H_\infty \) design for networked control systems with uncertainties. IEEE Trans. Ind. Inform. 3(4), 289–301 (2007)

    Article  Google Scholar 

  58. E.G. Tian, D. Yue, Z. Gu, Robust \(H_\infty \) control for nonlinear systems over network: a piecewise analysis method. Fuzzy Sets Syst. 161(21), 2731–2745 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. R.Q. Lu, Y. Xu, A.K. Xue, \(H_\infty \) filtering for singular systems with communication delays. Signal Process. 90(4), 1240–1248 (2010)

    Article  MATH  Google Scholar 

  60. W.H. Fan, H. Cai, Q.W. Chen, W.L. Hu, Stability of networked control systems with time-delay. Control Theory Appl. 21(6), 880–884 (2004)

    MATH  Google Scholar 

  61. M.B.G. Cloosterman, N. van de Wouw, W.P.M.H. Heemels, H. Nijmeijer, Stability of networked control systems with uncertain time-varying delays. IEEE Trans. Autom. Control 54(7), 1575–1580 (2009)

    Article  MathSciNet  Google Scholar 

  62. W.A. Zhang, L. Yu, S. Yin, A switched system approach to \(H_\infty \) control of networked control systems with time-varying delays. J. Frankl. Inst. 348(2), 165–178 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. H. Lin, P.J. Antsaklis, Persistent disturbance attenuation properties for networked control systems, in Proceeding of the 43rd IEEE Conference on Decision and Control, 2004, pp. 953–958

    Google Scholar 

  64. H. Lin, P.J. Antsaklis, Stability and persistent disturbance attenuation properties for a class of networked control systems: switched system approach. Int. J. Control 78(18), 1447–1458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  65. Y.L. Wang, G.H. Yang, \(H_\infty \) control of networked control systems with time delay and packet disordering. IET Control Theory Appl. 1(5), 1344–1354 (2007)

    Article  MathSciNet  Google Scholar 

  66. W.A. Zhang, L. Yu, New approach to stabilization of networked control systems with time-varying delays. IET Control Theory Appl. 2(12), 1094–1104 (2008)

    Article  MathSciNet  Google Scholar 

  67. C. Peng, D. Yue, E.G. Tian, Z. Gu, A delay distribution based stability analysis and synthesis approach for networked control systems. J. Frankl. Inst. 346(4), 349–365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. C. Peng, T.C. Yang, Communication-delay-distribution-dependent networked control for a class of T-S fuzzy systems. IEEE Trans. Fuzzy Syst. 18(2), 326–335 (2010)

    Google Scholar 

  69. S.L. Hu, Y.N. Zhang, Z.P. Du, Robust \(H_\infty \) control for T-S fuzzy systems with probabilistic interval time varying delay. Nonlinear Anal. Hybrid Syst. 6(3), 871–884 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. B. Tang, J. Wang, Y. Zhang, A delay-distribution approach to stabilization of networked control systems. IEEE Trans. Control Netw. Syst. 2(4), 382–392 (2015)

    Google Scholar 

  71. R. Krtolica, U. Ozguner, H. Chan, H. Goktas, J. Winkelman, M. Liubakka, Stability of linear feedback systems with random communication delays. Int. J. Control 59(4), 925–953 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  72. L. Xiao, A. Hassibi, J.P. How, Control with random communication delays via a discrete-time jump linear system approach, in The Proceeding of 2000 American Control Conference, Chicago, IL (2000), pp. 2199–2204

    Google Scholar 

  73. L.Q. Zhang, Y. Shi, T.W. Chen, B. Huang, A new method for stabilization of networked control systems with random delays. IEEE Trans. Autom. Control 50(8), 1177–1181 (2005)

    Article  MathSciNet  Google Scholar 

  74. Y. Shi, B. Yu, Output feedback stabilization of networked control systems with random delays modeled by Markov chains. IEEE Trans. Autom. Control 54(7), 1668–1674 (2009)

    Article  MathSciNet  Google Scholar 

  75. M.X. Liu, X.T. Liu, Y. Shi, S.Q. Wang, T-S fuzzy-model-based \(H_2\) and \(H_\infty \) filtering for networked control systems with two-channel Markovian random delays. Digit. Signal Process. 27, 167–174 (2014)

    Article  Google Scholar 

  76. L. Schenato, To zero or to hold control inputs with lossy links? IEEE Trans. Autom. Control 54(5), 1093–1099 (2009)

    Article  MathSciNet  Google Scholar 

  77. D. Zhang, L. Yu, W.A. Zhang, Exponential \(H_\infty \) filtering for nonlinear discrete-time switched stochastic systems with mixed time delays and random missing measurements. Asian J. Control 14(3), 807–816 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  78. Y.C. Tian, D. Levy, Compensation for control packet dropout in networked control systems. Inf. Sci. 178(5), 1263–1278 (2008)

    Article  MATH  Google Scholar 

  79. J.T. Yu, L.C. Fu, An optimal compensation framework for linear quadratic Gaussian control over lossy networks. IEEE Trans. Autom. Control 60(10), 2692–2697 (2015)

    Article  MathSciNet  Google Scholar 

  80. W.A. Zhang, L. Yu, Output feedback stabilization of networked control systems with packet dropouts. IEEE Trans. Autom. Control 52(9), 1705–1710 (2007)

    Article  MathSciNet  Google Scholar 

  81. S. Yin, L. Yu, W.A. Zhang, A switched system approach to networked \(H_\infty \) filtering with packet losses. Circuits Syst. Signal Process. 30(6), 1341–1354 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  82. J.Y. Yu, L. Wang, G.F. Zhang, M. Yu, Output feedback stabilisation of networked control systems via switched system approach. Int. J. Control 82(9), 1665–1677 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  83. M. Wang, J. Qiu, M. Chadli, M. Wang, A switched system approach to exponential stabilization of sampled-data T-S fuzzy systems with packet dropouts. IEEE Trans. Cybern. (2016)

    Google Scholar 

  84. W.A. Zhang, L. Yu, Stabilization of sampled-data control systems with control inputs missing. IEEE Trans. Autom. Control 55(2), 447–452 (2010)

    Article  MathSciNet  Google Scholar 

  85. Z. Wang, F. Yang, D.W.C. Ho, X. Liu, Robust \(H_\infty \) control for networked systems with random packet losses. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 37(4), 916–924 (2007)

    Article  Google Scholar 

  86. Z. Wang, D.W.C. Ho, Y. Liu, X. Liu, Robust \(H_\infty \) control for a class of nonlinear discrete time-delay stochastic systems with missing measurements. Automatica 45(3), 685–691 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  87. B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M.I. Jordan, S.S. Sastry, Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004)

    Article  MathSciNet  Google Scholar 

  88. G. Wei, Z. Wang, H. Shu, Robust filtering with stochastic nonlinearities and multiple missing measurements. Automatica 45(3), 836–841 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  89. X. He, Z. Wang, Y.D. Ji, D.H. Zhou, Robust fault detection for networked systems with distributed sensors. IEEE Trans. Aerosp. Electron. Syst. 47(1), 166–177 (2011)

    Article  Google Scholar 

  90. H.J. Gao, Y. Zhao, J. Lam, K. Chen, \(H_\infty \) fuzzy filtering of nonlinear systems with intermittent measurements. IEEE Trans. Fuzzy Syst. 17(2), 291–300 (2009)

    Article  Google Scholar 

  91. H. Li, C. Wu, L. Wu, H.K. Lam, Y. Gao, Filtering of interval type-2 fuzzy systems with intermittent measurements. IEEE Trans. Cybern. 46(3), 668–678 (2016)

    Article  Google Scholar 

  92. W.A. Zhang, L. Yu, Optimal guaranteed cost stabilization of networked systems with bounded random packet losses. Optim. Control Appl. Methods 33(1), 81–99 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  93. S.C. Smith, P. Seiler, Estimation with lossy measurements: jump estimators for jump systems. IEEE Trans. Autom. Control 48(12), 2163–2171 (2003)

    Article  MathSciNet  Google Scholar 

  94. Y. Xu, J.P. Hespanha, Estimation under uncontrolled and controlled communications in networked control systems, in Proceeding of the 44th Conference on Decision and Control (2005), pp. 842–847

    Google Scholar 

  95. A.L. Garcia, I. Widjaja, Communication Networks: Fundamental Concepts and Key Architectures (McGraw-Hill, Boston, 2001)

    Google Scholar 

  96. R.W. Brockett, Stabilization of motor networks, in Proceedings of the 34th IEEE Conference on Decision and Control (1995), pp. 1484–1488

    Google Scholar 

  97. V. Blondell, J. Tsitsiklis, NP hardness of some linear control design problem. SIAM J. Control Optim. 35(6), 2118–2127 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  98. D.H. Varsakelis, Feedback control systems as users of a shared network: communication sequences that guarantee stability, in Proceedings of the 40th IEEE Conference on Decision and Control (2001), pp. 3631–3636

    Google Scholar 

  99. M.S. Branicky, S.M. Phillips, W. Zhang, Scheduling and feedback co-design for networked control systems, in Proceedings of the 41st IEEE Conference on Decision and Control (2002), pp. 1211–1217

    Google Scholar 

  100. L. Zhang, D.H. Varsakelis, Communication and control co-design for networked control systems. Automatica 42(6), 953–958 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  101. W.J. Rugh, Linear System Theory (Prentice Hall, New Jersey, 1996)

    MATH  Google Scholar 

  102. Y.Q. Wang, H. Ye, S.X. Ding, G.Z. Wang, Fault detection of networked control systems subject to access constraints and random packet dropout. Acta Autom. Sin. 35(9), 1235–1239 (2009)

    Google Scholar 

  103. W.A. Zhang, L. Yu, G. Feng, Optimal linear estimation for networked systems with communication constraints. Automatica 47(9), 1992–2000 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  104. H. Zhang, Y. Tian, L.X. Gao, Stochastic observability of linear systems under access constraints. Asian J. Control 17(1), 64–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  105. C.Z. Zhang, G. Feng, J.B. Qiu, W.A. Zhang, T-S fuzzy-model-based piecewise \(H_\infty \) output feedback controller design for networked nonlinear systems with medium access constraint. Fuzzy Sets Syst. 248, 86–105 (2014)

    Article  MATH  Google Scholar 

  106. P.D. Zhou, L. Yu, H.B. Song, L.L. Ou, H-infinity filtering for network-based systems with stochastic protocols. Control Theory Appl. 27(12), 1711–1716 (2010)

    MATH  Google Scholar 

  107. G. Guo, Z.B. Lu, Q.L. Han, Control with Markov sensors/actuators assignment. IEEE Trans. Autom. Control 57(7), 1799–1804 (2012)

    Article  MathSciNet  Google Scholar 

  108. L. Zou, Z.D. Wang, H. Gao, Observer-based \(H_\infty \) control of networked systems with stochastic communication protocol: the finite-horizon case. Automatica 63, 366–373 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  109. D. Zhang, H.Y. Song, L. Yu, Robust fuzzy-model-based filtering for nonlinear cyber-physical systems with multiple stochastic incomplete measurements. IEEE Trans. Syst. Man Cybern. Syst. 1–13 (2016). doi:10.1109/TSMC.2016.2551200

  110. D. Zhang, P. Shi, Q.G. Wang, Energy-efficient distributed control of large-scale systems: a switched system approach. Int. J. Robust Nonlinear Control 26(14), 3101–3117 (2016). doi:10.1002/rnc.3494

    Article  MathSciNet  MATH  Google Scholar 

  111. D. Zhang, P. Shi, W.A. Zhang, L. Yu, Energy-efficient distributed filtering in sensor networks: a unified switched system approach. IEEE Trans. Cybern. doi:10.1109/TCYB.2016.2553043

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, D., Wang, QG., Yu, L. (2017). Introduction. In: Filtering and Control of Wireless Networked Systems. Studies in Systems, Decision and Control, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-319-53123-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53123-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53122-9

  • Online ISBN: 978-3-319-53123-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics