Skip to main content

Efficient Combination of Pairwise Feature Networks

  • Chapter
  • First Online:
Neural Connectomics Challenge

Abstract

This paper presents a novel method for the reconstruction of a neural network connectivity using calcium fluorescence data. We introduce a fast unsupervised method to integrate different networks that reconstructs structural connectivity from neuron activity. Our method improves the state-of-the-art reconstruction method General Transfer Entropy (GTE). We are able to better eliminate indirect links, improving therefore the quality of the network via a normalization and ensemble process of GTE and three new informative features. The approach is based on a simple combination of networks, which is remarkably fast. The performance of our approach is benchmarked on simulated time series provided at the connectomics challenge and also submitted at the public competition.

Editors: Demian Battaglia, Isabelle Guyon, Vincent Lemaire, Javier Orlandi, Bisakha Ray, Jordi Soriano

The original form of this article appears in JMLR W&CP Volume 46.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Pau Bellot and Patrick E Meyer. Efficient combination of pairwise feature networks - supplemental material. http://bellot.geek-lab.org/publications/efficient-combination-of-pairwise-feature-networks, 2014. Accessed: 2014-07-22.

  • Atul J Butte and Isaac S Kohane. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In Pac Symp Biocomput, volume 5, pages 418–429, 2000.

    Google Scholar 

  • dherkova. Transfer entropy - causality. https://github.com/dherkova/TE-Causality/tree/connectomics_challenge, 2014. Accessed: 2014-06-01.

  • Jeremiah J Faith, Boris Hayete, Joshua T Thaden, Ilaria Mogno, Jamey Wierzbowski, Guillaume Cottarel, Simon Kasif, James J Collins, and Timothy S Gardner. Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS biology, 5(1):e8, 2007.

    Article  Google Scholar 

  • Myles Hollander, Douglas A Wolfe, and Eric Chicken. Nonparametric statistical methods, volume 751. John Wiley & Sons, 2013.

    Google Scholar 

  • Dominik Janzing, Patrik O. Hoyer, and Bernhard Schlkopf. Telling cause from effect based on high-dimensional observations, 2010.

    Google Scholar 

  • Daniel Marbach, James C Costello, Robert Küffner, Nicole M Vega, Robert J Prill, Diogo M Camacho, Kyle R Allison, Manolis Kellis, James J Collins, Gustavo Stolovitzky, et al. Wisdom of crowds for robust gene network inference. Nature methods, 9(8):796–804, 2012.

    Article  Google Scholar 

  • Adam A Margolin, Ilya Nemenman, Katia Basso, Chris Wiggins, Gustavo Stolovitzky, Riccardo D Favera, and Andrea Califano. Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC bioinformatics, 7(Suppl 1):S7, 2006.

    Article  Google Scholar 

  • Patrick E Meyer, Kevin Kontos, Frederic Lafitte, and Gianluca Bontempi. Information-theoretic inference of large transcriptional regulatory networks. EURASIP journal on bioinformatics and systems biology, page 79879, 2007.

    Google Scholar 

  • The modENCODE Consortium et al. Identification of functional elements and regulatory circuits by drosophila modencode. Science, 330(6012):1787–1797, 2010.

    Google Scholar 

  • Alessio Moneta and Peter Spirtes. Graph-based search procedure for vector autoregressive models. Technical report, LEM Working Paper Series, 2005.

    Google Scholar 

  • Guido Nolte and Klaus-Robert Müller. Localizing and estimating causal relations of interacting brain rhythms. Frontiers in human neuroscience, 4, 2010.

    Google Scholar 

  • Judea Pearl. Causality: models, reasoning and inference, volume 29. Cambridge Univ Press, 2000.

    Google Scholar 

  • Florin Popescu and Isabelle Guyon, editors. Causality in Time Series: Challenges in Machine Learning, volume 5. Microtome, 2013.

    Google Scholar 

  • Philip N Sabes and Michael I Jordan. Advances in neural information processing systems. In In G. Tesauro & D. Touretzky & T. Leed (Eds.), Advances in Neural Information Processing Systems. Citeseer, 1995.

    Google Scholar 

  • Thomas Schreiber. Measuring information transfer. Physical review letters, 85(2):461, 2000.

    Article  Google Scholar 

  • Olav Stetter, Demian Battaglia, Jordi Soriano, and Theo Geisel. Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. PLoS Comput Biol, 8(8):e1002653, 08 2012.

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish “MECD” FPU Research Fellowship, the Spanish “MICINN” project TEC2013-43935-R and the Cellex foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pau Bellot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bellot, P., Meyer, P.E. (2017). Efficient Combination of Pairwise Feature Networks. In: Battaglia, D., Guyon, I., Lemaire, V., Orlandi, J., Ray, B., Soriano, J. (eds) Neural Connectomics Challenge. The Springer Series on Challenges in Machine Learning. Springer, Cham. https://doi.org/10.1007/978-3-319-53070-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53070-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53069-7

  • Online ISBN: 978-3-319-53070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics