Skip to main content

FtsZ-ring Architecture and Its Control by MinCD

Part of the Subcellular Biochemistry book series (SCBI,volume 84)

Abstract

In bacteria and archaea, the most widespread cell division system is based on the tubulin homologue FtsZ protein, whose filaments form the cytokinetic Z-ring. FtsZ filaments are tethered to the membrane by anchors such as FtsA and SepF and are regulated by accessory proteins. One such set of proteins is responsible for Z-ring’s spatiotemporal regulation, essential for the production of two equal-sized daughter cells. Here, we describe how our still partial understanding of the FtsZ-based cell division process has been progressed by visualising near-atomic structures of Z-rings and complexes that control Z-ring positioning in cells, most notably the MinCDE and Noc systems that act by negatively regulating FtsZ filaments. We summarise available data and how they inform mechanistic models for the cell division process.

Keywords

  • FtsZ
  • FtsA
  • Bacterial cell division
  • Z-ring structure
  • MinCD copolymers
  • Cytomotive filaments
  • Cell constriction
  • Liposome constriction
  • Sliding filaments
  • CryoET
  • Tomography
  • Collaborative filaments

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-53047-5_7
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-53047-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3

References

  • Adams DW, Errington J (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7:642–653

    CAS  PubMed  CrossRef  Google Scholar 

  • Addinall SG, Bi E, Lutkenhaus J (1996) FtsZ ring formation in fts mutants. J Bacteriol 178:3877–3884

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Adler HI et al (1967) Miniature Escherichia coli cells deficient in DNA. Proc Natl Acad Sci U S A 57:321–326

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Alexeeva S et al (2010) Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET. Mol Microbiol 77:384–398

    CAS  PubMed  CrossRef  Google Scholar 

  • Beall B, Lutkenhaus J (1992) Impaired cell division and sporulation of a Bacillus subtilis strain with the ftsA gene deleted. J Bacteriol 174:2398–2403

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Begg K, Donachie WD (1998) Division planes alternate in spherical cells of Escherichia coli. J Bacteriol 180:2564–2567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Begg K et al (1998) Roles of FtsA and FtsZ in activation of division sites. J Bacteriol 180:881–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Yehuda S, Losick R (2002) Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109:257–266

    CAS  PubMed  CrossRef  Google Scholar 

  • Bernhardt TG, de Boer PA (2005) SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli. Mol Cell 18:555–564

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Beuria TK et al (2009) Adenine nucleotide-dependent regulation of assembly of bacterial tubulin-like FtsZ by a hypermorph of bacterial actin-like FtsA. J Biol Chem 284:14079–14086

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bi EF, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164

    CAS  PubMed  CrossRef  Google Scholar 

  • Bork P, Sander C, Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci U S A 89:7290–7294

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bramhill D, Thompson CM (1994) GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc Natl Acad Sci U S A 91:5813–5817

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Busiek K, Margolin W (2014) A role for FtsA in SPOR-independent localization of the essential Escherichia coli cell division protein FtsN. Mol Microbiol 92:1212–1226

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Busiek KK et al (2012) The early divisome protein FtsA interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN. J Bacteriol 194:1989–2000

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Buss J et al (2013) In vivo organization of the FtsZ-ring by ZapA and ZapB revealed by quantitative super-resolution microscopy. Mol Microbiol 89:1099–1120

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cabre EJ et al (2013) Bacterial division proteins FtsZ and ZipA induce vesicle shrinkage and cell membrane invagination. J Biol Chem 288:26625–26634

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cordell SC, Anderson RE, Lowe J (2001) Crystal structure of the bacterial cell division inhibitor MinC. EMBO J 20:2454–2461

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dai K, Lutkenhaus J (1992) The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J Bacteriol 174:6145–6151

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dajkovic A et al (2008) MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ. Curr Biol 18:235–244

    CAS  PubMed  CrossRef  Google Scholar 

  • Davis BK et al (2002) Molecular evolution before the origin of species. Prog Biophys Mol Biol 79:77–133

    CAS  PubMed  CrossRef  Google Scholar 

  • de Boer PA, Crossley RE, Rothfield L (1988) Isolation and properties of minB, a complex genetic locus involved in correct placement of the division site in Escherichia coli. J Bacteriol 170:2106–2112

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • de Boer PA, Crossley RE, Rothfield L (1989) A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56:641–649

    PubMed  CrossRef  Google Scholar 

  • de Boer PA et al (1991) The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. EMBO J 10:4371–4380

    PubMed  PubMed Central  Google Scholar 

  • de Boer PA, Crossley R, Rothfield L (1992) The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359:254–256

    PubMed  CrossRef  Google Scholar 

  • Dewar SJ, Begg KJ, Donachie WD (1992) Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ. J Bacteriol 174:6314–6316

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Duman R et al (2013) Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring. Proc Natl Acad Sci U S A 110:E4601–E4610

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ebersbach G et al (2008) Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division. Mol Microbiol 68:720–735

    CAS  PubMed  CrossRef  Google Scholar 

  • Erickson HP et al (1996) Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci U S A 93:519–523

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Erickson HP, Anderson DE, Osawa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74:504–528

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Espéli O et al (2012) A MatP-divisome interaction coordinates chromosome segregation with cell division in : chromosome-divisome interplay. EMBO J 31:3198–3211

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Faguy DM, Doolittle WF (1998) Cytoskeletal proteins: the evolution of cell division. Curr Biol 8:R338–R341

    CAS  PubMed  CrossRef  Google Scholar 

  • Faruqi AR, Henderson R, McMullan G (2015) Progress and Development of Direct Detectors for Electron Cryomicroscopy. Adv Ima Ele Physics 190:103–141

    CrossRef  Google Scholar 

  • Feucht A et al (2001) Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol Microbiol 40:115–125

    CAS  PubMed  CrossRef  Google Scholar 

  • Fleurie A et al (2014) MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 516:259–262

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fu G et al (2010) In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM). PLoS One 5:e12682

    PubMed  CrossRef  CAS  Google Scholar 

  • Geissler B, Elraheb D, Margolin W (2003) A gain-of-function mutation in ftsA bypasses the requirement for the essential cell division gene zipA in Escherichia coli. Proc Natl Acad Sci U S A 100:4197–4202

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ghasriani H et al (2010) Appropriation of the MinD protein-interaction motif by the dimeric interface of the bacterial cell division regulator MinE. Proc Natl Acad Sci U S A 107:18416–18421

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ghosal D, Löwe J (2015) Collaborative protein filaments. EMBO J 34:2312–2320

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ghosal D et al (2014) MinCD cell division proteins form alternating copolymeric cytomotive filaments. Nat Commun 5:5341

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    CAS  PubMed  CrossRef  Google Scholar 

  • Goehring NW, Beckwith J (2005) Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr Biol 15:R514–R526

    CAS  PubMed  CrossRef  Google Scholar 

  • Guizetti J et al (2011) Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331:1616–1620

    CAS  PubMed  CrossRef  Google Scholar 

  • Hale CA, de Boer PA (1999) Recruitment of ZipA to the septal ring of Escherichia coli is dependent on FtsZ and independent of FtsA. J Bacteriol 181:167–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hale CA et al (2011) Identification of Escherichia coli ZapC (YcbW) as a component of the division apparatus that binds and bundles FtsZ polymers. J Bacteriol 193:1393–1404

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Haney SA et al (2001) Genetic analysis of the Escherichia coli FtsZ.ZipA interaction in the yeast two-hybrid system. Characterization of FtsZ residues essential for the interactions with ZipA and with FtsA. J Biol Chem 276:11980–11987

    CAS  PubMed  CrossRef  Google Scholar 

  • Harry EJ, Monahan L, Thompson L (2006) Bacterial cell division: the mechanism and its precison. Int Rev Cytol 253:27–94

    CAS  PubMed  CrossRef  Google Scholar 

  • Hirota V, Ryter A, Jacob F (1968) Thermosensitive mutants of E. coli affected in the process of DNA synthesis and cellular division. Cold Spring Harb Symp Quant Biol 33:677–693

    CAS  PubMed  CrossRef  Google Scholar 

  • Holden SJ et al (2014) High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization. Proc Natl Acad Sci U S A 111(12):4566–4571

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Holečková N et al (2015) LocZ is a new cell division protein involved in proper septum placement in Streptococcus pneumoniae. MBio 6:e01700–e01714

    Google Scholar 

  • Horger I et al (2008) FtsZ bacterial cytoskeletal polymers on curved surfaces: the importance of lateral interactions. Biophys J 94:L81–L83

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hu Z, Lutkenhaus J (1999) Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol 34:82–90

    CAS  PubMed  CrossRef  Google Scholar 

  • Hu Z, Lutkenhaus J (2000) Analysis of MinC reveals two independent domains involved in interaction with MinD and FtsZ. J Bacteriol 182:3965–3971

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hu Z, Saez C, Lutkenhaus J (2003) Recruitment of MinC, an inhibitor of Z-ring formation, to the membrane in Escherichia coli: role of MinD and MinE. J Bacteriol 185:196–203

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Huecas S et al (2008) Energetics and geometry of FtsZ polymers: nucleated self-assembly of single protofilaments. Biophys J 94:1796–1806

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ivanov V, Mizuuchi K (2010) Multiple modes of interconverting dynamic pattern formation by bacterial cell division proteins. Proc Natl Acad Sci U S A 107:8071–8078

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jennings PC et al (2010) Super-resolution imaging of the bacterial cytokinetic protein FtsZ. Micron 42:336–341

    PubMed  CrossRef  CAS  Google Scholar 

  • Jensen SO, Thompson LS, Harry EJ (2005) Cell division in Bacillus subtilis: FtsZ and FtsA association is Z-ring independent, and FtsA is required for efficient midcell Z-Ring assembly. J Bacteriol 187:6536–6544

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jimenez M et al (2011) Reconstitution and organization of Escherichia coli proto-ring elements (FtsZ and FtsA) inside giant unilamellar vesicles obtained from bacterial inner membranes. J Biol Chem 286:11236–11241

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kang GB et al (2010) Crystal structure of Helicobacter pylori MinE, a cell division topological specificity factor. Mol Microbiol 76:1222–1231

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Karimova G, Dautin N, Ladant D (2005) Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187:2233–2243

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–155

    CAS  PubMed  CrossRef  Google Scholar 

  • Kiekebusch D et al (2012) Localized dimerization and nucleoid binding drive gradient formation by the bacterial cell division inhibitor MipZ. Mol Cell 46:245–259

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Koonin EV (1993) A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J Mol Biol 229:1165–1174

    CAS  PubMed  CrossRef  Google Scholar 

  • Kruse K, Howard M, Margolin W (2007) An experimentalist’s guide to computational modelling of the Min system. Mol Microbiol 63:1279–1284

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lan G et al (2009) Condensation of FtsZ filaments can drive bacterial cell division. Proc Natl Acad Sci U S A 106:121–126

    CAS  PubMed  CrossRef  Google Scholar 

  • Lara B et al (2005) Cell division in cocci: localization and properties of the Streptococcus pneumoniae FtsA protein. Mol Microbiol 55:699–711

    CAS  PubMed  CrossRef  Google Scholar 

  • Leger MM et al (2015) An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proc Natl Acad Sci U S A 112:10239–10246

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Levin PA, Losick R (1996) Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev 10:478–488

    CAS  PubMed  CrossRef  Google Scholar 

  • Li Z et al (2007) The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26:4694–4708

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lindas AC et al (2008) A unique cell division machinery in the Archaea. Proc Natl Acad Sci U S A 105:18942–18946

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Loose M, Schwille P (2009) Biomimetic membrane systems to study cellular organization. J Struct Biol 168. doi:10.1016/j.jsb.2009.03.016

  • Loose M, Mitchison TJ (2014) The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat Cell Biol 16:38–46

    CAS  PubMed  CrossRef  Google Scholar 

  • Loose M et al (2008) Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320:789–792

    CAS  PubMed  CrossRef  Google Scholar 

  • Loose M et al (2011) Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nat Struct Mol Biol 18:577–583

    CAS  PubMed  CrossRef  Google Scholar 

  • Löwe J, Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391:203–206

    PubMed  CrossRef  Google Scholar 

  • Löwe J, Amos LA (2000) Helical tubes of FtsZ from Methanococcus jannaschii. Biol Chem 381:993–999

    PubMed  CrossRef  Google Scholar 

  • Lu C, Reedy M, Erickson HP (2000) Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol 182:164–170

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lutkenhaus J (2007) Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu Rev Biochem 76:539–562

    CAS  PubMed  CrossRef  Google Scholar 

  • Lutkenhaus J (2012) The ParA/MinD family puts things in their place. Trends Microbiol 20:411–418

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ma X, Margolin W (1999) Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J Bacteriol 181:7531–7544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Ehrhardt DW, Margolin W (1996) Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci U S A 93:12998–13003

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ma X et al (1997) Interactions between heterologous FtsA and FtsZ proteins at the FtsZ ring. J Bacteriol 179:6788–6797

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Margolin W (2005) FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6:862–871

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Margolin W (2012) The price of tags in protein localization studies. J Bacteriol 194:6369–6371

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Marston AL et al (1998) Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 12:3419–3430

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Martos A et al (2012) Towards a bottom-up reconstitution of bacterial cell division. Trends Cell Biol 22:634–643

    CAS  PubMed  CrossRef  Google Scholar 

  • Mercier R, Kawai Y, Errington J (2013) Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 152:997–1007

    CAS  PubMed  CrossRef  Google Scholar 

  • Michie KA, Löwe J (2006) Dynamic filaments of the bacterial cytoskeleton. Annu Rev Biochem 75:467–492

    CAS  PubMed  CrossRef  Google Scholar 

  • Milam SL, Osawa M, Erickson HP (2012) Negative-stain electron microscopy of inside-out FtsZ rings reconstituted on artificial membrane tubules show ribbons of protofilaments. Biophys J 103:59–68

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mingorance J et al (2005) Visualization of single Escherichia coli FtsZ filament dynamics with atomic force microscopy. J Biol Chem 280:20909–20914

    CAS  PubMed  CrossRef  Google Scholar 

  • Monahan LG, Harry EJ (2013) Identifying how bacterial cells find their middle: a new perspective. Mol Microbiol 87:231–234

    CAS  PubMed  CrossRef  Google Scholar 

  • Mosyak L et al (2000) The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J 19:3179–3191

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mukherjee A, Lutkenhaus J (1994) Guanine nucleotide-dependent assembly of FtsZ into filaments. J Bacteriol 176:2754–2758

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mukherjee A, Saez C, Lutkenhaus J (2001) Assembly of an FtsZ mutant deficient in GTPase activity has implications for FtsZ assembly and the role of the Z ring in cell division. J Bacteriol 183:7190–7197

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Oliva MA, Cordell SC, Löwe J (2004) Structural insights into FtsZ protofilament formation. Nat Struct Mol Biol 11:1243–1250

    CAS  PubMed  CrossRef  Google Scholar 

  • Osawa M, Erickson HP (2011) Inside-out Z rings–constriction with and without GTP hydrolysis. Mol Microbiol 81:571–579

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Osawa M, Erickson HP (2013) Liposome division by a simple bacterial division machinery. Proc Natl Acad Sci U S A 110:11000–11004

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Osawa M, Anderson DE, Erickson HP (2008) Reconstitution of contractile FtsZ rings in liposomes. Science 320:792–794

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Osawa M, Anderson DE, Erickson HP (2009) Curved FtsZ protofilaments generate bending forces on liposome membranes. EMBO J 28:3476–3484

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Palmer CM, Löwe J (2013) A cylindrical specimen holder for electron cryo-tomography. Ultramicroscopy 137:20–29

    PubMed  CrossRef  CAS  Google Scholar 

  • Park KT et al (2011) The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell 146:396–407

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Park KT, Du S, Lutkenhaus J (2015) MinC/MinD copolymers are not required for Min function. Mol Microbiol 98(5):895–909

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Pichoff S, Lutkenhaus J (2005) Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol Microbiol 55:1722–1734

    CAS  PubMed  CrossRef  Google Scholar 

  • Pichoff S, Lutkenhaus J (2007) Identification of a region of FtsA required for interaction with FtsZ. Mol Microbiol 64:1129–1138

    CAS  PubMed  CrossRef  Google Scholar 

  • Popp D et al (2009) FtsZ condensates: an in vitro electron microscopy study. Biopolymers 91:340–350

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ramirez-Arcos S et al (2001) Expression of Neisseria gonorrhoeae cell division genes ftsZ, ftsE and minD is influenced by environmental conditions. Res Microbiol 152:781–791

    CAS  PubMed  CrossRef  Google Scholar 

  • Ramos D et al (2006) Conformation of the cell division regulator MinE: evidence for interactions between the topological specificity and anti-MinCD domains. Biochemistry 45:4593–4601

    CAS  PubMed  CrossRef  Google Scholar 

  • Raskin DM, de Boer PA (1999) MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J Bacteriol 181:6419–6424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reeve JN et al (1973) Minicells of Bacillus subtilis. J Bacteriol 114:860–873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas G, Vogel SK, Schwille P (2014) Reconstitution of cytoskeletal protein assemblies for large-scale membrane transformation. Curr Opin Chem Biol 22. doi:10.1016/j.cbpa.2014.07.018. Epub 2014 Aug 12

  • Rothfield L, Taghbalout A, Shih YL (2005) Spatial control of bacterial division-site placement. Nat Rev Microbiol 3:959–968

    CAS  PubMed  CrossRef  Google Scholar 

  • Rowlett VW, Margolin W (2014) 3D-SIM super-resolution of FtsZ and its membrane tethers in Escherichia coli cells. Biophys J 107:L17–L20

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Samson RY et al (2008) A Role for the ESCRT System in Cell Division in Archaea. Science 322:1710–1713

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Shen B, Lutkenhaus J (2009) The conserved C-terminal tail of FtsZ is required for the septal localization and division inhibitory activity of MinC(C)/MinD. Mol Microbiol 72:410–424

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Shiomi D, Margolin W (2008) Compensation for the loss of the conserved membrane targeting sequence of FtsA provides new insights into its function. Mol Microbiol 67:558–569

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Singh JK et al (2007) A membrane protein, EzrA, regulates assembly dynamics of FtsZ by interacting with the C-terminal tail of FtsZ. Biochemistry 46:11013–11022

    CAS  PubMed  CrossRef  Google Scholar 

  • Small E et al (2007) FtsZ polymer-bundling by the Escherichia coli ZapA orthologue, YgfE, involves a conformational change in bound GTP. J Mol Biol 369:210–221

    CAS  PubMed  CrossRef  Google Scholar 

  • Strauss MP et al (2012) 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis. PLoS Biol 10:e1001389

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Stricker J et al (2002) Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc Natl Acad Sci U S A 99:3171–3175

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sun Q, Margolin W (1998) FtsZ dynamics during the division cycle of live Escherichia coli cells. J Bacteriol 180:2050–2056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swulius MT, Jensen GJ (2012) The helical MreB cytoskeleton in Escherichia coli MC1000/pLE7 is an artifact of the N-Terminal yellow fluorescent protein tag. J Bacteriol 194:6382–6386

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Szeto TH et al (2003) The MinD membrane targeting sequence is a transplantable lipid-binding helix. J Biol Chem 278:40050–40056

    CAS  PubMed  CrossRef  Google Scholar 

  • Szwedziak P et al (2012) FtsA forms actin-like protofilaments. EMBO J 31:2249–2260

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Szwedziak P et al (2014) Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. eLife 3. doi:10.7554/eLife.04601

  • Thanbichler M, Shapiro L (2006) MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126:147–162

    CAS  PubMed  CrossRef  Google Scholar 

  • Treuner-Lange A et al (2013) PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus. Mol Microbiol 87:235–253

    CAS  PubMed  CrossRef  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 237:37–72

    CrossRef  Google Scholar 

  • van den Ent F, Löwe J (2000) Crystal structure of the cell division protein FtsA from Thermotoga maritima. EMBO J 19:5300–5307

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Veiga H, Jorge AM, Pinho MG (2011) Absence of nucleoid occlusion effector Noc impairs formation of orthogonal FtsZ rings during Staphylococcus aureus cell division. Mol Microbiol 80:1366–1380

    CAS  PubMed  CrossRef  Google Scholar 

  • Vicente M, Rico AI (2006) The order of the ring: assembly of Escherichia coli cell division components. Mol Microbiol 61:5–8

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang X et al (1997) Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J Bacteriol 179:5551–5559

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ward JEJ, Lutkenhaus J (1985) Overproduction of FtsZ induces minicell formation in E. coli. Cell 42:941–949

    CAS  PubMed  CrossRef  Google Scholar 

  • Willemse J et al (2011) Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev 25:89–99

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Woldringh C et al (1991) Toporegulation of bacterial division according to the nucleoid occlusion model. Res Microbiol 142:309–320

    CAS  PubMed  CrossRef  Google Scholar 

  • Wu LJ et al (2009) Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. EMBO J 28:1940–1952

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wu W et al (2011) Determination of the structure of the MinD-ATP complex reveals the orientation of MinD on the membrane and the relative location of the binding sites. Mol Microbiol 79:1515–1528

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wu LJ, Errington J (2012) Nucleoid occlusion and bacterial cell division. Nat Rev Mircobiol, 10:8–12

    Google Scholar 

  • Yim L et al (2000) Role of the carboxy terminus of Escherichia coli FtsA in self-interaction and cell division. J Bacteriol 182:6366–6373

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Szwedziak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Szwedziak, P., Ghosal, D. (2017). FtsZ-ring Architecture and Its Control by MinCD. In: Löwe, J., Amos, L. (eds) Prokaryotic Cytoskeletons. Subcellular Biochemistry, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-53047-5_7

Download citation