FtsZ-ring Architecture and Its Control by MinCD

  • Piotr SzwedziakEmail author
  • Debnath Ghosal
Part of the Subcellular Biochemistry book series (SCBI, volume 84)


In bacteria and archaea, the most widespread cell division system is based on the tubulin homologue FtsZ protein, whose filaments form the cytokinetic Z-ring. FtsZ filaments are tethered to the membrane by anchors such as FtsA and SepF and are regulated by accessory proteins. One such set of proteins is responsible for Z-ring’s spatiotemporal regulation, essential for the production of two equal-sized daughter cells. Here, we describe how our still partial understanding of the FtsZ-based cell division process has been progressed by visualising near-atomic structures of Z-rings and complexes that control Z-ring positioning in cells, most notably the MinCDE and Noc systems that act by negatively regulating FtsZ filaments. We summarise available data and how they inform mechanistic models for the cell division process.


FtsZ FtsA Bacterial cell division Z-ring structure MinCD copolymers Cytomotive filaments Cell constriction Liposome constriction Sliding filaments CryoET Tomography Collaborative filaments 


  1. Adams DW, Errington J (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7:642–653PubMedCrossRefGoogle Scholar
  2. Addinall SG, Bi E, Lutkenhaus J (1996) FtsZ ring formation in fts mutants. J Bacteriol 178:3877–3884PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adler HI et al (1967) Miniature Escherichia coli cells deficient in DNA. Proc Natl Acad Sci U S A 57:321–326PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alexeeva S et al (2010) Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET. Mol Microbiol 77:384–398PubMedCrossRefGoogle Scholar
  5. Beall B, Lutkenhaus J (1992) Impaired cell division and sporulation of a Bacillus subtilis strain with the ftsA gene deleted. J Bacteriol 174:2398–2403PubMedPubMedCentralCrossRefGoogle Scholar
  6. Begg K, Donachie WD (1998) Division planes alternate in spherical cells of Escherichia coli. J Bacteriol 180:2564–2567PubMedPubMedCentralGoogle Scholar
  7. Begg K et al (1998) Roles of FtsA and FtsZ in activation of division sites. J Bacteriol 180:881–884PubMedPubMedCentralGoogle Scholar
  8. Ben-Yehuda S, Losick R (2002) Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109:257–266PubMedCrossRefGoogle Scholar
  9. Bernhardt TG, de Boer PA (2005) SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli. Mol Cell 18:555–564PubMedPubMedCentralCrossRefGoogle Scholar
  10. Beuria TK et al (2009) Adenine nucleotide-dependent regulation of assembly of bacterial tubulin-like FtsZ by a hypermorph of bacterial actin-like FtsA. J Biol Chem 284:14079–14086PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bi EF, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164PubMedCrossRefGoogle Scholar
  12. Bork P, Sander C, Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci U S A 89:7290–7294PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bramhill D, Thompson CM (1994) GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc Natl Acad Sci U S A 91:5813–5817PubMedPubMedCentralCrossRefGoogle Scholar
  14. Busiek K, Margolin W (2014) A role for FtsA in SPOR-independent localization of the essential Escherichia coli cell division protein FtsN. Mol Microbiol 92:1212–1226PubMedPubMedCentralCrossRefGoogle Scholar
  15. Busiek KK et al (2012) The early divisome protein FtsA interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN. J Bacteriol 194:1989–2000PubMedPubMedCentralCrossRefGoogle Scholar
  16. Buss J et al (2013) In vivo organization of the FtsZ-ring by ZapA and ZapB revealed by quantitative super-resolution microscopy. Mol Microbiol 89:1099–1120PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cabre EJ et al (2013) Bacterial division proteins FtsZ and ZipA induce vesicle shrinkage and cell membrane invagination. J Biol Chem 288:26625–26634PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cordell SC, Anderson RE, Lowe J (2001) Crystal structure of the bacterial cell division inhibitor MinC. EMBO J 20:2454–2461PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dai K, Lutkenhaus J (1992) The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J Bacteriol 174:6145–6151PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dajkovic A et al (2008) MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ. Curr Biol 18:235–244PubMedCrossRefGoogle Scholar
  21. Davis BK et al (2002) Molecular evolution before the origin of species. Prog Biophys Mol Biol 79:77–133PubMedCrossRefGoogle Scholar
  22. de Boer PA, Crossley RE, Rothfield L (1988) Isolation and properties of minB, a complex genetic locus involved in correct placement of the division site in Escherichia coli. J Bacteriol 170:2106–2112PubMedPubMedCentralCrossRefGoogle Scholar
  23. de Boer PA, Crossley RE, Rothfield L (1989) A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56:641–649PubMedCrossRefGoogle Scholar
  24. de Boer PA et al (1991) The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. EMBO J 10:4371–4380PubMedPubMedCentralGoogle Scholar
  25. de Boer PA, Crossley R, Rothfield L (1992) The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359:254–256PubMedCrossRefGoogle Scholar
  26. Dewar SJ, Begg KJ, Donachie WD (1992) Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ. J Bacteriol 174:6314–6316PubMedPubMedCentralCrossRefGoogle Scholar
  27. Duman R et al (2013) Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring. Proc Natl Acad Sci U S A 110:E4601–E4610PubMedPubMedCentralCrossRefGoogle Scholar
  28. Ebersbach G et al (2008) Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division. Mol Microbiol 68:720–735PubMedCrossRefGoogle Scholar
  29. Erickson HP et al (1996) Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci U S A 93:519–523PubMedPubMedCentralCrossRefGoogle Scholar
  30. Erickson HP, Anderson DE, Osawa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74:504–528PubMedPubMedCentralCrossRefGoogle Scholar
  31. Espéli O et al (2012) A MatP-divisome interaction coordinates chromosome segregation with cell division in : chromosome-divisome interplay. EMBO J 31:3198–3211PubMedPubMedCentralCrossRefGoogle Scholar
  32. Faguy DM, Doolittle WF (1998) Cytoskeletal proteins: the evolution of cell division. Curr Biol 8:R338–R341PubMedCrossRefGoogle Scholar
  33. Faruqi AR, Henderson R, McMullan G (2015) Progress and Development of Direct Detectors for Electron Cryomicroscopy. Adv Ima Ele Physics 190:103–141CrossRefGoogle Scholar
  34. Feucht A et al (2001) Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol Microbiol 40:115–125PubMedCrossRefGoogle Scholar
  35. Fleurie A et al (2014) MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 516:259–262PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fu G et al (2010) In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM). PLoS One 5:e12682PubMedCrossRefGoogle Scholar
  37. Geissler B, Elraheb D, Margolin W (2003) A gain-of-function mutation in ftsA bypasses the requirement for the essential cell division gene zipA in Escherichia coli. Proc Natl Acad Sci U S A 100:4197–4202PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ghasriani H et al (2010) Appropriation of the MinD protein-interaction motif by the dimeric interface of the bacterial cell division regulator MinE. Proc Natl Acad Sci U S A 107:18416–18421PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ghosal D, Löwe J (2015) Collaborative protein filaments. EMBO J 34:2312–2320PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ghosal D et al (2014) MinCD cell division proteins form alternating copolymeric cytomotive filaments. Nat Commun 5:5341PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39PubMedCrossRefGoogle Scholar
  42. Goehring NW, Beckwith J (2005) Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr Biol 15:R514–R526PubMedCrossRefGoogle Scholar
  43. Guizetti J et al (2011) Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331:1616–1620PubMedCrossRefGoogle Scholar
  44. Hale CA, de Boer PA (1999) Recruitment of ZipA to the septal ring of Escherichia coli is dependent on FtsZ and independent of FtsA. J Bacteriol 181:167–176PubMedPubMedCentralGoogle Scholar
  45. Hale CA et al (2011) Identification of Escherichia coli ZapC (YcbW) as a component of the division apparatus that binds and bundles FtsZ polymers. J Bacteriol 193:1393–1404PubMedPubMedCentralCrossRefGoogle Scholar
  46. Haney SA et al (2001) Genetic analysis of the Escherichia coli FtsZ.ZipA interaction in the yeast two-hybrid system. Characterization of FtsZ residues essential for the interactions with ZipA and with FtsA. J Biol Chem 276:11980–11987PubMedCrossRefGoogle Scholar
  47. Harry EJ, Monahan L, Thompson L (2006) Bacterial cell division: the mechanism and its precison. Int Rev Cytol 253:27–94PubMedCrossRefGoogle Scholar
  48. Hirota V, Ryter A, Jacob F (1968) Thermosensitive mutants of E. coli affected in the process of DNA synthesis and cellular division. Cold Spring Harb Symp Quant Biol 33:677–693PubMedCrossRefGoogle Scholar
  49. Holden SJ et al (2014) High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization. Proc Natl Acad Sci U S A 111(12):4566–4571PubMedPubMedCentralCrossRefGoogle Scholar
  50. Holečková N et al (2015) LocZ is a new cell division protein involved in proper septum placement in Streptococcus pneumoniae. MBio 6:e01700–e01714Google Scholar
  51. Horger I et al (2008) FtsZ bacterial cytoskeletal polymers on curved surfaces: the importance of lateral interactions. Biophys J 94:L81–L83PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hu Z, Lutkenhaus J (1999) Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol 34:82–90PubMedCrossRefGoogle Scholar
  53. Hu Z, Lutkenhaus J (2000) Analysis of MinC reveals two independent domains involved in interaction with MinD and FtsZ. J Bacteriol 182:3965–3971PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hu Z, Saez C, Lutkenhaus J (2003) Recruitment of MinC, an inhibitor of Z-ring formation, to the membrane in Escherichia coli: role of MinD and MinE. J Bacteriol 185:196–203PubMedPubMedCentralCrossRefGoogle Scholar
  55. Huecas S et al (2008) Energetics and geometry of FtsZ polymers: nucleated self-assembly of single protofilaments. Biophys J 94:1796–1806PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ivanov V, Mizuuchi K (2010) Multiple modes of interconverting dynamic pattern formation by bacterial cell division proteins. Proc Natl Acad Sci U S A 107:8071–8078PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jennings PC et al (2010) Super-resolution imaging of the bacterial cytokinetic protein FtsZ. Micron 42:336–341PubMedCrossRefGoogle Scholar
  58. Jensen SO, Thompson LS, Harry EJ (2005) Cell division in Bacillus subtilis: FtsZ and FtsA association is Z-ring independent, and FtsA is required for efficient midcell Z-Ring assembly. J Bacteriol 187:6536–6544PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jimenez M et al (2011) Reconstitution and organization of Escherichia coli proto-ring elements (FtsZ and FtsA) inside giant unilamellar vesicles obtained from bacterial inner membranes. J Biol Chem 286:11236–11241PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kang GB et al (2010) Crystal structure of Helicobacter pylori MinE, a cell division topological specificity factor. Mol Microbiol 76:1222–1231PubMedPubMedCentralCrossRefGoogle Scholar
  61. Karimova G, Dautin N, Ladant D (2005) Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187:2233–2243PubMedPubMedCentralCrossRefGoogle Scholar
  62. Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–155PubMedCrossRefGoogle Scholar
  63. Kiekebusch D et al (2012) Localized dimerization and nucleoid binding drive gradient formation by the bacterial cell division inhibitor MipZ. Mol Cell 46:245–259PubMedPubMedCentralCrossRefGoogle Scholar
  64. Koonin EV (1993) A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J Mol Biol 229:1165–1174PubMedCrossRefGoogle Scholar
  65. Kruse K, Howard M, Margolin W (2007) An experimentalist’s guide to computational modelling of the Min system. Mol Microbiol 63:1279–1284PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lan G et al (2009) Condensation of FtsZ filaments can drive bacterial cell division. Proc Natl Acad Sci U S A 106:121–126PubMedCrossRefGoogle Scholar
  67. Lara B et al (2005) Cell division in cocci: localization and properties of the Streptococcus pneumoniae FtsA protein. Mol Microbiol 55:699–711PubMedCrossRefGoogle Scholar
  68. Leger MM et al (2015) An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proc Natl Acad Sci U S A 112:10239–10246PubMedPubMedCentralCrossRefGoogle Scholar
  69. Levin PA, Losick R (1996) Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev 10:478–488PubMedCrossRefGoogle Scholar
  70. Li Z et al (2007) The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26:4694–4708PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lindas AC et al (2008) A unique cell division machinery in the Archaea. Proc Natl Acad Sci U S A 105:18942–18946PubMedPubMedCentralCrossRefGoogle Scholar
  72. Loose M, Schwille P (2009) Biomimetic membrane systems to study cellular organization. J Struct Biol 168. doi: 10.1016/j.jsb.2009.03.016
  73. Loose M, Mitchison TJ (2014) The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat Cell Biol 16:38–46PubMedCrossRefGoogle Scholar
  74. Loose M et al (2008) Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320:789–792PubMedCrossRefGoogle Scholar
  75. Loose M et al (2011) Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nat Struct Mol Biol 18:577–583PubMedCrossRefGoogle Scholar
  76. Löwe J, Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391:203–206PubMedCrossRefGoogle Scholar
  77. Löwe J, Amos LA (2000) Helical tubes of FtsZ from Methanococcus jannaschii. Biol Chem 381:993–999PubMedCrossRefGoogle Scholar
  78. Lu C, Reedy M, Erickson HP (2000) Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol 182:164–170PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lutkenhaus J (2007) Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu Rev Biochem 76:539–562PubMedCrossRefGoogle Scholar
  80. Lutkenhaus J (2012) The ParA/MinD family puts things in their place. Trends Microbiol 20:411–418PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ma X, Margolin W (1999) Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J Bacteriol 181:7531–7544PubMedPubMedCentralGoogle Scholar
  82. Ma X, Ehrhardt DW, Margolin W (1996) Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci U S A 93:12998–13003PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ma X et al (1997) Interactions between heterologous FtsA and FtsZ proteins at the FtsZ ring. J Bacteriol 179:6788–6797PubMedPubMedCentralCrossRefGoogle Scholar
  84. Margolin W (2005) FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6:862–871PubMedPubMedCentralCrossRefGoogle Scholar
  85. Margolin W (2012) The price of tags in protein localization studies. J Bacteriol 194:6369–6371PubMedPubMedCentralCrossRefGoogle Scholar
  86. Marston AL et al (1998) Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 12:3419–3430PubMedPubMedCentralCrossRefGoogle Scholar
  87. Martos A et al (2012) Towards a bottom-up reconstitution of bacterial cell division. Trends Cell Biol 22:634–643PubMedCrossRefGoogle Scholar
  88. Mercier R, Kawai Y, Errington J (2013) Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 152:997–1007PubMedCrossRefGoogle Scholar
  89. Michie KA, Löwe J (2006) Dynamic filaments of the bacterial cytoskeleton. Annu Rev Biochem 75:467–492PubMedCrossRefGoogle Scholar
  90. Milam SL, Osawa M, Erickson HP (2012) Negative-stain electron microscopy of inside-out FtsZ rings reconstituted on artificial membrane tubules show ribbons of protofilaments. Biophys J 103:59–68PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mingorance J et al (2005) Visualization of single Escherichia coli FtsZ filament dynamics with atomic force microscopy. J Biol Chem 280:20909–20914PubMedCrossRefGoogle Scholar
  92. Monahan LG, Harry EJ (2013) Identifying how bacterial cells find their middle: a new perspective. Mol Microbiol 87:231–234PubMedCrossRefGoogle Scholar
  93. Mosyak L et al (2000) The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J 19:3179–3191PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mukherjee A, Lutkenhaus J (1994) Guanine nucleotide-dependent assembly of FtsZ into filaments. J Bacteriol 176:2754–2758PubMedPubMedCentralCrossRefGoogle Scholar
  95. Mukherjee A, Saez C, Lutkenhaus J (2001) Assembly of an FtsZ mutant deficient in GTPase activity has implications for FtsZ assembly and the role of the Z ring in cell division. J Bacteriol 183:7190–7197PubMedPubMedCentralCrossRefGoogle Scholar
  96. Oliva MA, Cordell SC, Löwe J (2004) Structural insights into FtsZ protofilament formation. Nat Struct Mol Biol 11:1243–1250PubMedCrossRefGoogle Scholar
  97. Osawa M, Erickson HP (2011) Inside-out Z rings–constriction with and without GTP hydrolysis. Mol Microbiol 81:571–579PubMedPubMedCentralCrossRefGoogle Scholar
  98. Osawa M, Erickson HP (2013) Liposome division by a simple bacterial division machinery. Proc Natl Acad Sci U S A 110:11000–11004PubMedPubMedCentralCrossRefGoogle Scholar
  99. Osawa M, Anderson DE, Erickson HP (2008) Reconstitution of contractile FtsZ rings in liposomes. Science 320:792–794PubMedPubMedCentralCrossRefGoogle Scholar
  100. Osawa M, Anderson DE, Erickson HP (2009) Curved FtsZ protofilaments generate bending forces on liposome membranes. EMBO J 28:3476–3484PubMedPubMedCentralCrossRefGoogle Scholar
  101. Palmer CM, Löwe J (2013) A cylindrical specimen holder for electron cryo-tomography. Ultramicroscopy 137:20–29PubMedCrossRefGoogle Scholar
  102. Park KT et al (2011) The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell 146:396–407PubMedPubMedCentralCrossRefGoogle Scholar
  103. Park KT, Du S, Lutkenhaus J (2015) MinC/MinD copolymers are not required for Min function. Mol Microbiol 98(5):895–909PubMedPubMedCentralCrossRefGoogle Scholar
  104. Pichoff S, Lutkenhaus J (2005) Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol Microbiol 55:1722–1734PubMedCrossRefGoogle Scholar
  105. Pichoff S, Lutkenhaus J (2007) Identification of a region of FtsA required for interaction with FtsZ. Mol Microbiol 64:1129–1138PubMedCrossRefGoogle Scholar
  106. Popp D et al (2009) FtsZ condensates: an in vitro electron microscopy study. Biopolymers 91:340–350PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ramirez-Arcos S et al (2001) Expression of Neisseria gonorrhoeae cell division genes ftsZ, ftsE and minD is influenced by environmental conditions. Res Microbiol 152:781–791PubMedCrossRefGoogle Scholar
  108. Ramos D et al (2006) Conformation of the cell division regulator MinE: evidence for interactions between the topological specificity and anti-MinCD domains. Biochemistry 45:4593–4601PubMedCrossRefGoogle Scholar
  109. Raskin DM, de Boer PA (1999) MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J Bacteriol 181:6419–6424PubMedPubMedCentralGoogle Scholar
  110. Reeve JN et al (1973) Minicells of Bacillus subtilis. J Bacteriol 114:860–873PubMedPubMedCentralGoogle Scholar
  111. Rivas G, Vogel SK, Schwille P (2014) Reconstitution of cytoskeletal protein assemblies for large-scale membrane transformation. Curr Opin Chem Biol 22. doi: 10.1016/j.cbpa.2014.07.018. Epub 2014 Aug 12
  112. Rothfield L, Taghbalout A, Shih YL (2005) Spatial control of bacterial division-site placement. Nat Rev Microbiol 3:959–968PubMedCrossRefGoogle Scholar
  113. Rowlett VW, Margolin W (2014) 3D-SIM super-resolution of FtsZ and its membrane tethers in Escherichia coli cells. Biophys J 107:L17–L20PubMedPubMedCentralCrossRefGoogle Scholar
  114. Samson RY et al (2008) A Role for the ESCRT System in Cell Division in Archaea. Science 322:1710–1713PubMedPubMedCentralCrossRefGoogle Scholar
  115. Shen B, Lutkenhaus J (2009) The conserved C-terminal tail of FtsZ is required for the septal localization and division inhibitory activity of MinC(C)/MinD. Mol Microbiol 72:410–424PubMedPubMedCentralCrossRefGoogle Scholar
  116. Shiomi D, Margolin W (2008) Compensation for the loss of the conserved membrane targeting sequence of FtsA provides new insights into its function. Mol Microbiol 67:558–569PubMedPubMedCentralCrossRefGoogle Scholar
  117. Singh JK et al (2007) A membrane protein, EzrA, regulates assembly dynamics of FtsZ by interacting with the C-terminal tail of FtsZ. Biochemistry 46:11013–11022PubMedCrossRefGoogle Scholar
  118. Small E et al (2007) FtsZ polymer-bundling by the Escherichia coli ZapA orthologue, YgfE, involves a conformational change in bound GTP. J Mol Biol 369:210–221PubMedCrossRefGoogle Scholar
  119. Strauss MP et al (2012) 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis. PLoS Biol 10:e1001389PubMedPubMedCentralCrossRefGoogle Scholar
  120. Stricker J et al (2002) Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc Natl Acad Sci U S A 99:3171–3175PubMedPubMedCentralCrossRefGoogle Scholar
  121. Sun Q, Margolin W (1998) FtsZ dynamics during the division cycle of live Escherichia coli cells. J Bacteriol 180:2050–2056PubMedPubMedCentralGoogle Scholar
  122. Swulius MT, Jensen GJ (2012) The helical MreB cytoskeleton in Escherichia coli MC1000/pLE7 is an artifact of the N-Terminal yellow fluorescent protein tag. J Bacteriol 194:6382–6386PubMedPubMedCentralCrossRefGoogle Scholar
  123. Szeto TH et al (2003) The MinD membrane targeting sequence is a transplantable lipid-binding helix. J Biol Chem 278:40050–40056PubMedCrossRefGoogle Scholar
  124. Szwedziak P et al (2012) FtsA forms actin-like protofilaments. EMBO J 31:2249–2260PubMedPubMedCentralCrossRefGoogle Scholar
  125. Szwedziak P et al (2014) Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. eLife 3. doi: 10.7554/eLife.04601
  126. Thanbichler M, Shapiro L (2006) MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126:147–162PubMedCrossRefGoogle Scholar
  127. Treuner-Lange A et al (2013) PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus. Mol Microbiol 87:235–253PubMedCrossRefGoogle Scholar
  128. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 237:37–72CrossRefGoogle Scholar
  129. van den Ent F, Löwe J (2000) Crystal structure of the cell division protein FtsA from Thermotoga maritima. EMBO J 19:5300–5307PubMedPubMedCentralCrossRefGoogle Scholar
  130. Veiga H, Jorge AM, Pinho MG (2011) Absence of nucleoid occlusion effector Noc impairs formation of orthogonal FtsZ rings during Staphylococcus aureus cell division. Mol Microbiol 80:1366–1380PubMedCrossRefGoogle Scholar
  131. Vicente M, Rico AI (2006) The order of the ring: assembly of Escherichia coli cell division components. Mol Microbiol 61:5–8PubMedCrossRefGoogle Scholar
  132. Wang X et al (1997) Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J Bacteriol 179:5551–5559PubMedPubMedCentralCrossRefGoogle Scholar
  133. Ward JEJ, Lutkenhaus J (1985) Overproduction of FtsZ induces minicell formation in E. coli. Cell 42:941–949PubMedCrossRefGoogle Scholar
  134. Willemse J et al (2011) Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev 25:89–99PubMedPubMedCentralCrossRefGoogle Scholar
  135. Woldringh C et al (1991) Toporegulation of bacterial division according to the nucleoid occlusion model. Res Microbiol 142:309–320PubMedCrossRefGoogle Scholar
  136. Wu LJ et al (2009) Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. EMBO J 28:1940–1952PubMedPubMedCentralCrossRefGoogle Scholar
  137. Wu W et al (2011) Determination of the structure of the MinD-ATP complex reveals the orientation of MinD on the membrane and the relative location of the binding sites. Mol Microbiol 79:1515–1528PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wu LJ, Errington J (2012) Nucleoid occlusion and bacterial cell division. Nat Rev Mircobiol, 10:8–12Google Scholar
  139. Yim L et al (2000) Role of the carboxy terminus of Escherichia coli FtsA in self-interaction and cell division. J Bacteriol 182:6366–6373PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biology, Institute of Molecular Biology & BiophysicsETH ZürichZürichSwitzerland
  2. 2.Broad Center for the Biological SciencesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations