FtsZ Constriction Force – Curved Protofilaments Bending Membranes

  • Harold P. EricksonEmail author
  • Masaki Osawa
Part of the Subcellular Biochemistry book series (SCBI, volume 84)


FtsZ assembles in vitro into protofilaments (pfs) that are one subunit thick and ~50 subunits long. In vivo these pfs assemble further into the Z ring, which, along with accessory division proteins, constricts to divide the cell. We have reconstituted Z rings in liposomes in vitro, using pure FtsZ that was modified with a membrane targeting sequence to directly bind the membrane. This FtsZ-mts assembled Z rings and constricted the liposomes without any accessory proteins. We proposed that the force for constriction was generated by a conformational change from straight to curved pfs. Evidence supporting this mechanism came from switching the membrane tether to the opposite side of the pf. These switched-tether pfs assembled “inside-out” Z rings, and squeezed the liposomes from the outside, as expected for the bending model. We propose three steps for the full process of cytokinesis: (a) pf bending generates a constriction force on the inner membrane, but the rigid peptidoglycan wall initially prevents any invagination; (b) downstream proteins associate to the Z ring and remodel the peptidoglycan, permitting it to follow the constricting FtsZ to a diameter of ~250 nm; the final steps of closure of the septum and membrane fusion are achieved by excess membrane synthesis and membrane fluctuations.


E. coli Z-ring constriction FtsZ Tubulin Curved protofilaments Intermediate curved pfs Bacterial cell division Constriction force Liposomes FtsZ-MTS Reconstituted systems FtsA Substructure of Z ring Final step of septum closure Copy number of divisome proteins 


  1. Adams DW, Wu LJ, Czaplewski LG, Errington J (2011) Multiple effects of benzamide antibiotics on FtsZ function. Mol Microbiol 80:68–84CrossRefPubMedGoogle Scholar
  2. Addinall SG, Lutkenhaus J (1996) FtsZ-spirals and -arcs determine the shape of the invaginating septa in some mutants of Escherichia coli. Mol Microbiol 22:231–237CrossRefPubMedGoogle Scholar
  3. Anderson DE, Gueiros-Filho FJ, Erickson HP (2004) Assembly Dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J Bacteriol 186:5775–5781CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andreu JM et al (2010) The antibacterial cell division inhibitor PC190723 is an FtsZ polymer-stabilizing agent that induces filament assembly and condensation. J Biol Chem 285:14239–14246CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arumugam S, Chwastek G, Fischer-Friedrich E, Ehrig C, Monch I, Schwille P (2012) Surface topology engineering of membranes for the mechanical investigation of the tubulin homologue FtsZ. Angew Chem Int Ed Eng 51:11858–11862CrossRefGoogle Scholar
  6. Arumugam S, Petrasek Z, Schwille P (2014) MinCDE exploits the dynamic nature of FtsZ filaments for its spatial regulation. Proc Natl Acad Sci U S A 111:E1192–E1200CrossRefPubMedPubMedCentralGoogle Scholar
  7. Beuria TK, Mullapudi S, Mileykovskaya E, Sadasivam M, Dowhan W, Margolin W (2009) Adenine nucleotide-dependent regulation of assembly of bacterial tubulin-like FtsZ by a hypermorph of bacterial actin-like FtsA. J Biol Chem 284:14079–14086CrossRefPubMedPubMedCentralGoogle Scholar
  8. Biteen JS, Goley ED, Shapiro L, Moerner WE (2012) Three-dimensional super-resolution imaging of the midplane protein FtsZ in live Caulobacter crescentus cells using astigmatism. ChemPhysChem 13:1007–1012CrossRefPubMedPubMedCentralGoogle Scholar
  9. Buske PJ, Levin PA (2012) Extreme C terminus of bacterial cytoskeletal protein FtsZ plays fundamental role in assembly independent of modulatory proteins. J Biol Chem 287:10945–10957CrossRefPubMedPubMedCentralGoogle Scholar
  10. Buss J, Coltharp C, Shtengel G, Yang X, Hess H, Xiao J (2015) A multi-layered protein network stabilizes the Escherichia coli FtsZ-ring and modulates constriction dynamics. PLoS Genet 11:e1005128CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen Y, Erickson HP (2005) Rapid in vitro assembly dynamics and subunit turnover of FtsZ demonstrated by fluorescence resonance energy transfer. J Biol Chem 280:22549–22554CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen Y, Erickson HP (2009) FtsZ filament dynamics at steady state: subunit exchange with and without nucleotide hydrolysis. Biochemistry 48:6664–6673CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chen Y, Bjornson K, Redick SD, Erickson HP (2005) A rapid fluorescence assay for FtsZ assembly indicates cooperative assembly with a dimer nucleus. Biophys J 88:505–514CrossRefPubMedGoogle Scholar
  14. Coltharp C, Buss J, Plumer TM, Xiao J (2016) Defining the rate-limiting processes of bacterial cytokinesis. Proc Natl Acad Sci U S A 113(8):E1044–E1053CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dajkovic A, Lan G, Sun SX, Wirtz D, Lutkenhaus J (2008) MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ. Curr Biol 18:235–244CrossRefPubMedGoogle Scholar
  16. Erickson HP (1997) FtsZ, a tubulin homolog, in prokaryote cell division. Trends Cell Biol 7:362–367CrossRefPubMedGoogle Scholar
  17. Erickson HP (2009) Modeling the physics of FtsZ assembly and force generation. Proc Natl Acad Sci U S A 106:9238–9243CrossRefPubMedPubMedCentralGoogle Scholar
  18. Erickson HP, Taylor DW, Taylor KA, Bramhill D (1996) Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci U S A 93:519–523CrossRefPubMedPubMedCentralGoogle Scholar
  19. Erickson HP, Anderson DE, Osawa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74:504–528CrossRefPubMedPubMedCentralGoogle Scholar
  20. Eun YJ, Kapoor M, Hussain S, Garner EC (2015) Bacterial filament systems: toward understanding their emergent behavior and cellular functions. J Biol Chem 290:17181–17189CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fu G, Huang T, Buss J, Coltharp C, Hensel Z, Xiao J (2010) In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM). PLoS ONE 5:e12682CrossRefPubMedGoogle Scholar
  22. Fujiwara MT, Sekine K, Yamamoto YY, Abe T, Sato N, Itoh RD (2009) Live imaging of chloroplast FtsZ1 filaments, rings, spirals, and motile dot structures in the AtMinE1 mutant and overexpressor of Arabidopsis thaliana. Plant Cell Physiol 50:1116–1126CrossRefPubMedGoogle Scholar
  23. Geissler B, Shiomi D, Margolin W (2007) The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring. Microbiology (Reading, England) 153:814–825Google Scholar
  24. Gittes F, Mickey B, Nettleton J, Howard J (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120:923–934CrossRefPubMedGoogle Scholar
  25. Goley ED, Dye NA, Werner JN, Gitai Z, Shapiro L (2010) Imaging-based identification of a critical regulator of FtsZ protofilament curvature in Caulobacter. Mol Cell 39:975–987CrossRefPubMedPubMedCentralGoogle Scholar
  26. Goley ED, Yeh YC, Hong SH, Fero MJ, Abeliuk E, McAdams HH, Shapiro L (2011) Assembly of the Caulobacter cell division machine. Mol Microbiol 80:1680–1698CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gonzalez JM et al (2005) Cooperative behavior of Escherichia coli cell-division protein FtsZ assembly involves the preferential cyclization of long single-stranded fibrils. Proc Natl Acad Sci U S A 102:1895–1900CrossRefPubMedPubMedCentralGoogle Scholar
  28. Grafmuller A, Voth GA (2011) Intrinsic bending of microtubule protofilaments. Structure 19:409–417CrossRefPubMedGoogle Scholar
  29. Hamon L et al (2009) Mica surface promotes the assembly of cytoskeletal proteins. Langmuir 25:3331–3335CrossRefPubMedGoogle Scholar
  30. Holden SJ, Pengo T, Meibom KL, Fernandez Fernandez C, Collier J, Manley S (2014) High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization. Proc Natl Acad Sci U S A 111:4566–4571CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hörger I, Velasco E, Mingorance J, Rivas G, Tarazona P, Velez M (2008) Langevin computer simulations of bacterial protein filaments and the force-generating mechanism during cell division. Phys Rev E Stat Nonlinear Soft Matter Phys 77:011902CrossRefGoogle Scholar
  32. Housman M, Milam SL, Moore DA, Osawa M, Erickson HP (2016) FtsZ protofilament curvature is the opposite of tubulin rings. Biochemistry 55:4085–4091Google Scholar
  33. Hsin J, Gopinathan A, Huang KC (2012) Nucleotide-dependent conformations of FtsZ dimers and force generation observed through molecular dynamics simulations. Proc Natl Acad Sci U S A 109:9432–9437CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huecas S, Andreu JM (2004) Polymerization of nucleotide-free, GDP- and GTP-bound cell division protein FtsZ: GDP makes the difference. FEBS Lett 569:43–48CrossRefPubMedGoogle Scholar
  35. Huecas S, Llorca O, Boskovic J, Martin-Benito J, Valpuesta JM, Andreu JM (2008) Energetics and geometry of FtsZ polymers: nucleated self-assembly of single protofilaments. Biophys J 94:1796–1806CrossRefPubMedPubMedCentralGoogle Scholar
  36. Huecas S et al (2015) Beyond a fluorescent probe: inhibition of cell division protein FtsZ by mant-GTP elucidated by NMR and biochemical approaches. ACS Chem Biol 10:2382–2392CrossRefPubMedGoogle Scholar
  37. Jacq M, Adam V, Bourgeois D, Moriscot C, Di Guilmi AM, Vernet T, Morlot C (2015) Remodeling of the Z-ring nanostructure during the Streptococcus pneumoniae cell cycle revealed by photoactivated localization microscopy. mBio 6:eo1108–1115Google Scholar
  38. Johnson CBLZ, Luo Z, Shaik RS, Sung MW, Vitha S, Holzenburg A (2015) In situ structure of FtsZ mini-rings in Arabidopsis chloroplasts. Adv Struct Chem Imag 1:12CrossRefGoogle Scholar
  39. Lan G, Daniels BR, Dobrowsky TM, Wirtz D, Sun SX (2009) Condensation of FtsZ filaments can drive bacterial cell division. Proc Natl Acad Sci U S A 106:121–126CrossRefPubMedGoogle Scholar
  40. Leaver M, Dominguez-Cuevas P, Coxhead JM, Daniel RA, Errington J (2009) Life without a wall or division machine in Bacillus subtilis. Nature 457:849–853CrossRefPubMedGoogle Scholar
  41. Li Z, Trimble MJ, Brun YV, Jensen GJ (2007) The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26:4694–4708CrossRefPubMedPubMedCentralGoogle Scholar
  42. Li Y et al (2013) FtsZ protofilaments use a hinge-opening mechanism for constrictive force generation. Science 341:392–395CrossRefPubMedGoogle Scholar
  43. Li GW, Burkhardt D, Gross C, Weissman JS (2014) Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157:624–635CrossRefPubMedPubMedCentralGoogle Scholar
  44. Loose M, Mitchison TJ (2014) The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat Cell Biol 16:38–46CrossRefPubMedGoogle Scholar
  45. Lu C, Reedy M, Erickson HP (2000) Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol 182:164–170CrossRefPubMedPubMedCentralGoogle Scholar
  46. Margolin W, Wang R, Kumar M (1996) Isolation of an ftsZ homolog from the archaebacterium Halobacterium salinarium: implications for the evolution of FtsZ and tubulin. J Bacteriol 178:1320–1327CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mateos-Gil P et al (2012) FtsZ polymers bound to lipid bilayers through ZipA form dynamic two dimensional networks. Biochim Biophys Acta 1818:806–813CrossRefPubMedGoogle Scholar
  48. Matsui T, Yamane J, Mogi N, Yamaguchi H, Takemoto H, Yao M, Tanaka I (2012) Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus. Acta Crystallogr 68:1175–1188Google Scholar
  49. McIntosh JR, Volkov V, Ataullakhanov FI, Grishchuk EL (2010) Tubulin depolymerization may be an ancient biological motor. J Cell Sci 123:3425–3434CrossRefPubMedPubMedCentralGoogle Scholar
  50. Meier EL, Goley ED (2014) Form and function of the bacterial cytokinetic ring. Curr Opin Cell Biol 26:19–27CrossRefPubMedGoogle Scholar
  51. Mercier R, Kawai Y, Errington J (2013) Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 152:997–1007CrossRefPubMedGoogle Scholar
  52. Michie KA, Monahan LG, Beech PL, Harry EJ (2006) Trapping of a spiral-like intermediate of the bacterial cytokinetic protein FtsZ. J Bacteriol 188:1680–1690CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mickey B, Howard J (1995) Rigidity of microtubules is increased by stabilizing agents. J Cell Biol 130:909–917CrossRefPubMedGoogle Scholar
  54. Milam SL, Erickson HP (2013) Rapid in vitro assembly of Caulobacter crescentus FtsZ protein at pH 6.5 and 7.2. J Biol Chem 288:23675–23679CrossRefPubMedPubMedCentralGoogle Scholar
  55. Milam SL, Osawa M, Erickson HP (2012) Negative-stain electron microscopy of inside-out FtsZ rings reconstituted on artificial membrane tubules show ribbons of protofilaments. Biophys J 103:59–68CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mingorance J, Tadros M, Vicente M, Gonzalez JM, Rivas G, Velez M (2005) Visualization of single Escherichia coli FtsZ filament dynamics with atomic force microscopy. J Biol Chem 280:20909–20914CrossRefPubMedGoogle Scholar
  57. Moores CA, Milligan RA (2008) Visualisation of a kinesin-13 motor on microtubule end mimics. J Mol Biol 377:647–654CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nawrotek A, Knossow M, Gigant B (2011) The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin. J Mol Biol 412:35–42CrossRefPubMedGoogle Scholar
  59. Ohi M, Li Y, Cheng Y, Walz T (2004) Negative staining and image classification – powerful tools in modern electron microscopy. Biol Proced Online 6:23–34CrossRefPubMedPubMedCentralGoogle Scholar
  60. Osawa M, Erickson HP (2011) Inside-out Z rings – constriction with and without GTP hydrolysis. Mol Microbiol 81:571–579CrossRefPubMedPubMedCentralGoogle Scholar
  61. Osawa M, Erickson HP (2013) Liposome division by a simple bacterial division machinery. Proc Natl Acad Sci U S A 110:11000–11004CrossRefPubMedPubMedCentralGoogle Scholar
  62. Osawa M, Anderson DE, Erickson HP (2008) Reconstitution of contractile FtsZ rings in liposomes. Science 320:792–794CrossRefPubMedPubMedCentralGoogle Scholar
  63. Osawa M, Anderson DE, Erickson HP (2009) Curved FtsZ protofilaments generate bending forces on liposome membranes. EMBO J 28:3476–3484CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pichoff S, Lutkenhaus J (2005) Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol Microbiol 55:1722–1734CrossRefPubMedGoogle Scholar
  65. Popp D, Iwasa M, Narita A, Erickson HP, Maeda Y (2009) FtsZ condensates: an in vitro electron microscopy study. Biopolymers 91:340–350CrossRefPubMedPubMedCentralGoogle Scholar
  66. Popp D, Iwasa M, Erickson HP, Narita A, Maeda Y, Robinson RC (2010) Suprastructures and dynamic properties of Mycobacterium tuberculosis FtsZ. J Biol Chem 285:11281–11289CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ramirez-Aportela E, Lopez-Blanco JR, Andreu JM, Chacon P (2014) Understanding nucleotide-regulated FtsZ filament dynamics and the monomer assembly switch with large-scale atomistic simulations. Biophys J 107:2164–2176CrossRefPubMedPubMedCentralGoogle Scholar
  68. Romberg L, Mitchison TJ (2004) Rate-limiting guanosine 5’-triphosphate hydrolysis during nucleotide turnover by FtsZ, a prokaryotic tubulin homologue involved in bacterial cell division. Biochemistry 43:282–288CrossRefPubMedGoogle Scholar
  69. Romberg L, Simon M, Erickson HP (2001) Polymerization of FtsZ, a bacterial homolog of tubulin. Is assembly cooperative? J Biol Chem 276:11743–11753CrossRefPubMedGoogle Scholar
  70. Rowlett VW, Margolin W (2014) 3D-SIM super-resolution of FtsZ and its membrane tethers in Escherichia coli cells. Biophys J 107:L17–L20CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sato M, Mogi Y, Nishikawa T, Miyamura S, Nagumo T, Kawano S (2009) The dynamic surface of dividing cyanelles and ultrastructure of the region directly below the surface in Cyanophora paradoxa. Planta 229:781–791CrossRefPubMedGoogle Scholar
  72. Soderstrom B, Skoog K, Blom H, Weiss DS, von Heijne G, Daley DO (2014) Disassembly of the divisome in Escherichia coli: evidence that FtsZ dissociates before compartmentalization. Mol Microbiol 92:1–9CrossRefPubMedPubMedCentralGoogle Scholar
  73. Srinivasan R, Mishra M, Wu L, Yin Z, Balasubramanian MK (2008) The bacterial cell division protein FtsZ assembles into cytoplasmic rings in fission yeast. Genes Dev 22:1741–1746CrossRefPubMedPubMedCentralGoogle Scholar
  74. Strauss MP, Liew AT, Turnbull L, Whitchurch CB, Monahan LG, Harry EJ (2012) 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis. PLoS Biol 10:e1001389CrossRefPubMedPubMedCentralGoogle Scholar
  75. Stricker J, Maddox P, Salmon ED, Erickson HP (2002) Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc Natl Acad Sci U S A 99:3171–3175CrossRefPubMedPubMedCentralGoogle Scholar
  76. Szwedziak P, Wang Q, Freund SM, Lowe J (2012) FtsA forms actin-like protofilaments. EMBO J 31:2249–2260CrossRefPubMedPubMedCentralGoogle Scholar
  77. Szwedziak P, Wang Q, Bharat TA, Tsim M, Lowe J (2014) Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. eLife 3:e04601CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tan D, Rice WJ, Sosa H (2008) Structure of the kinesin13-microtubule ring complex. Structure 16:1732–1739CrossRefPubMedPubMedCentralGoogle Scholar
  79. Theisen KE, Zhmurov A, Newberry ME, Barsegov V, Dima RI (2012) Multiscale modeling of the nanomechanics of microtubule protofilaments. J Phys Chem B 116:8545–8555CrossRefPubMedGoogle Scholar
  80. Turner DJ, Portman I, Dafforn TR, Rodger A, Roper DI, Smith CJ, Turner MS (2012) The mechanics of FtsZ fibers. Biophys J 102:731–738CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wang X, Lutkenhaus J (1996a) Characterization of FtsZ from Mycoplasma pulmonis, an organism lacking a cell wall. J Bacteriol 178:2314–2319CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wang X, Lutkenhaus J (1996b) FtsZ ring: the eubacterial division apparatus conserved in archaebacteria. Mol Microbiol 21:313–319CrossRefPubMedGoogle Scholar
  83. Wang HW, Nogales E (2005) Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435:911–915CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zhang M, Schmitz AJ, Kadirjan-Kalbach DK, Terbush AD, Osteryoung KW (2013) Chloroplast division protein ARC3 regulates chloroplast FtsZ-ring assembly and positioning in arabidopsis through interaction with FtsZ2. Plant Cell 25:1787–1802CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zhao FQ, Craig R (2003) Capturing time-resolved changes in molecular structure by negative staining. J Struct Biol 141:43–52CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Cell BiologyDuke UniversityDurhamUSA

Personalised recommendations