Archaeal Actin-Family Filament Systems

  • Ann-Christin LindåsEmail author
  • Karin Valegård
  • Thijs J. G. Ettema
Part of the Subcellular Biochemistry book series (SCBI, volume 84)


Actin represents one of the most abundant and conserved eukaryotic proteins over time, and has an important role in many different cellular processes such as cell shape determination, motility, force generation, cytokinesis, amongst many others. Eukaryotic actin has been studied for decades and was for a long time considered a eukaryote-specific trait. However, in the early 2000s a bacterial actin homolog, MreB, was identified, characterized and found to have a cytoskeletal function and group within the superfamily of actin proteins. More recently, an actin cytoskeleton was also identified in archaea. The genome of the hyperthermophilic crenarchaeon Pyrobaculum calidifontis contains a five-gene cluster named Arcade encoding for an actin homolog, Crenactin, polymerizing into helical filaments spanning the whole length of the cell. Phylogenetic and structural studies place Crenactin closer to the eukaryotic actin than to the bacterial homologues. A significant difference, however, is that Crenactin can form single helical filaments in addition to filaments containing two intertwined proto filaments. The genome of the recently discovered Lokiarchaeota encodes several different actin homologues, termed Lokiactins, which are even more closely related to the eukaryotic actin than Crenactin. A primitive, dynamic actin-based cytoskeleton in archaea could have enabled the engulfment of the alphaproteobacterial progenitor of the mitochondria, a key-event in the evolution of eukaryotes.


Actin superfamily in archaea Crenarchaea Pyrobaculum calidifontis Crenactin MreB - Arcadin Archaeal cytoskeleton Helical filaments 


  1. Amo T, Paje MLF, Inagaki A et al (2002) Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows in atmospheric air. Archaea 1:113–121CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bean GJ, Flickinger ST, Westler WM et al (2009) A22 disrupts the bacterial actin cytoskeleton by directly binding and inducing a low-affinity state in MreB. Biochemistry 48:4852–4857CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bernander R, Lind AE, Ettema TJG (2011) An archaeal origin for the actin cytoskeleton. Commun Integr Biol 4:664–667CrossRefPubMedPubMedCentralGoogle Scholar
  4. Braun T, Orlova A, Valegård K et al (2015) Archaeal actin from a hyperthermophile forms a single-stranded filament. Proc Natl Acad Sci U S A 112:9340–9345CrossRefPubMedPubMedCentralGoogle Scholar
  5. Carlier MF et al (2015) Control of polarized assembly of actin filaments in cell motility. Cell Mol Life Sci 72:3051–3067CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478CrossRefPubMedGoogle Scholar
  7. Davidson AJ, Wood W (2016) Unravelling the actin cytoskeleton: a new competitive edge. Trends Cell Biol 26(8):569–576CrossRefPubMedPubMedCentralGoogle Scholar
  8. Egelman EH, Francis N, DeRosier DJ (1982) F-actin is a helix with a random variable twist. Nature 298:131–135CrossRefPubMedGoogle Scholar
  9. Elkins JG, Podar M, Graham DE et al (2008) A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci U S A 105:8102–8107CrossRefPubMedPubMedCentralGoogle Scholar
  10. Erickson HP (2007) Evolution of the cytoskeleton. Bioessays 29:668–677CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ettema TJG, Lindås AC, Bernander R (2011) An actin-based cytoskeleton in archaea. Mol Microbiol 80:1052–1061CrossRefPubMedGoogle Scholar
  12. Eun YJ, Kapoor M, Hussain S et al (2015) Bacterial filament systems: toward understanding their emergent behaviour and cellular functions. J Biol Chem 290:17181–17189CrossRefPubMedPubMedCentralGoogle Scholar
  13. Frixione E (2000) Recurring views on the structure and function of the cytoskeleton: a 300-year epic. Cell Motil Cytoskeleton 46:73–94CrossRefPubMedGoogle Scholar
  14. Fujii T, Iwane AH, Yanagida T et al (2010) Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467:724–728CrossRefPubMedGoogle Scholar
  15. Goodson HV, Hawse WF (2002) Molecular evolution of the actin family. J Cell Sci 115:2619–2622PubMedGoogle Scholar
  16. Guy L, Ettema TJG (2011) The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol 19:580–587CrossRefPubMedGoogle Scholar
  17. Hara F, Yamashiro K, Nemoto N et al (2007) An actin homolog of the archaeon Thermoplasma acidophilum that retains the ancient characteristics of eukaryotic actin. J Bacteriol 189:2039–2045CrossRefPubMedGoogle Scholar
  18. Hennessey ES, Drummond DR, Sparrow JC (1993) Molecular genetics of actin function. Biochem J 291:657–671CrossRefPubMedPubMedCentralGoogle Scholar
  19. Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38:545–549CrossRefGoogle Scholar
  20. Holmes KC, Popp D, Gebhard W et al (1990) Atomic model of the actin filament. Nature 347:44–49CrossRefPubMedGoogle Scholar
  21. Izoré T, Duman R, Kureisaite-Ciziene D et al (2014) Crenactin from Pyrobaculum calidifontis is closely related to actin in structure and forms steep helical filaments. FEBS Lett 588:776–782CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jones LJF, Carballido-López R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922CrossRefPubMedGoogle Scholar
  23. Kabsch W, Mannherz HG, Suck D et al (1990) Atomic structure of the actin:DNase I complex. Nature 347:37–44CrossRefPubMedGoogle Scholar
  24. Köster DV, Mayor S (2016) Cortical actin and the plasma membrane: inextricably intertwined. Curr Opin Cell Biol 38:81–89CrossRefPubMedGoogle Scholar
  25. Lindås AC, Karlsson EA, Lindgren MT et al (2008) A unique cell division machinery in the Archaea. Proc Natl Acad Sci U S A 105:18942–18946CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lindås AC, Chruszcz M, Bernander R et al (2014) Structure of crenactin, an archaeal actin homologue active at 90 °C. Acta Crystallogr D Biol Crystallogr D70:492–500CrossRefGoogle Scholar
  27. Makarova KS, Yutin N, Bell SD et al (2010) Evolution of diverse cell division and vesicle formation systems in Archaea. Nat Rev Microbiol 8:731–741CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mishra M, Huang J, Balasubramanian MK (2014) The yeast actin cytoskeleton. FEMS Microbiol Rev 38:213–227CrossRefPubMedGoogle Scholar
  29. Pollard TD, Cooper JA (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 55:987–1035CrossRefPubMedGoogle Scholar
  30. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212CrossRefPubMedPubMedCentralGoogle Scholar
  31. Roeben A, Kofler C, Nagy I et al (2006) Crystal structure of an archaeal actin homolog. J Mol Biol 358:145–156CrossRefPubMedGoogle Scholar
  32. Saw JH, Spang A, Zaremba-Niedzwiedzka K et al (2015) Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes. Philos Trans R Soc Lond Ser B Biol Sci 370:20140328CrossRefGoogle Scholar
  33. Spang A, Saw JH, Jørgensen SL et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179CrossRefPubMedPubMedCentralGoogle Scholar
  34. van den Ent F, Amos LA, Löwe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413:39–44CrossRefPubMedGoogle Scholar
  35. van den Ent F, Izoré T, Bharat TA, Johnson CM, Löwe J (2014) Bacterial actin MreB forms antiparallel double filaments. Elife 3:e02634PubMedPubMedCentralGoogle Scholar
  36. Vorobiev S, Strokopytov B, Drubin DG et al (2003) The structure of nonvertebrate actin: implications for the ATP hydrolytic mechanism. Proc Natl Acad Sci U S A 100:5760–5765CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ann-Christin Lindås
    • 1
    Email author
  • Karin Valegård
    • 2
  • Thijs J. G. Ettema
    • 3
  1. 1.Department of Molecular Biosciences, The Wenner-Gren InstituteStockholm UniversityStockholmSweden
  2. 2.Department of Cell and Molecular Biology/Molecular BiophysicsUppsala UniversityUppsalaSweden
  3. 3.Department of Cell and Molecular Biology/Molecular EvolutionUppsala UniversityUppsalaSweden

Personalised recommendations