Skip to main content

Archaeal Actin-Family Filament Systems

  • Chapter
  • First Online:
Prokaryotic Cytoskeletons

Part of the book series: Subcellular Biochemistry ((SCBI,volume 84))

Abstract

Actin represents one of the most abundant and conserved eukaryotic proteins over time, and has an important role in many different cellular processes such as cell shape determination, motility, force generation, cytokinesis, amongst many others. Eukaryotic actin has been studied for decades and was for a long time considered a eukaryote-specific trait. However, in the early 2000s a bacterial actin homolog, MreB, was identified, characterized and found to have a cytoskeletal function and group within the superfamily of actin proteins. More recently, an actin cytoskeleton was also identified in archaea. The genome of the hyperthermophilic crenarchaeon Pyrobaculum calidifontis contains a five-gene cluster named Arcade encoding for an actin homolog, Crenactin, polymerizing into helical filaments spanning the whole length of the cell. Phylogenetic and structural studies place Crenactin closer to the eukaryotic actin than to the bacterial homologues. A significant difference, however, is that Crenactin can form single helical filaments in addition to filaments containing two intertwined proto filaments. The genome of the recently discovered Lokiarchaeota encodes several different actin homologues, termed Lokiactins, which are even more closely related to the eukaryotic actin than Crenactin. A primitive, dynamic actin-based cytoskeleton in archaea could have enabled the engulfment of the alphaproteobacterial progenitor of the mitochondria, a key-event in the evolution of eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amo T, Paje MLF, Inagaki A et al (2002) Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows in atmospheric air. Archaea 1:113–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bean GJ, Flickinger ST, Westler WM et al (2009) A22 disrupts the bacterial actin cytoskeleton by directly binding and inducing a low-affinity state in MreB. Biochemistry 48:4852–4857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernander R, Lind AE, Ettema TJG (2011) An archaeal origin for the actin cytoskeleton. Commun Integr Biol 4:664–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun T, Orlova A, Valegård K et al (2015) Archaeal actin from a hyperthermophile forms a single-stranded filament. Proc Natl Acad Sci U S A 112:9340–9345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlier MF et al (2015) Control of polarized assembly of actin filaments in cell motility. Cell Mol Life Sci 72:3051–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478

    Article  CAS  PubMed  Google Scholar 

  • Davidson AJ, Wood W (2016) Unravelling the actin cytoskeleton: a new competitive edge. Trends Cell Biol 26(8):569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egelman EH, Francis N, DeRosier DJ (1982) F-actin is a helix with a random variable twist. Nature 298:131–135

    Article  CAS  PubMed  Google Scholar 

  • Elkins JG, Podar M, Graham DE et al (2008) A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci U S A 105:8102–8107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson HP (2007) Evolution of the cytoskeleton. Bioessays 29:668–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettema TJG, Lindås AC, Bernander R (2011) An actin-based cytoskeleton in archaea. Mol Microbiol 80:1052–1061

    Article  CAS  PubMed  Google Scholar 

  • Eun YJ, Kapoor M, Hussain S et al (2015) Bacterial filament systems: toward understanding their emergent behaviour and cellular functions. J Biol Chem 290:17181–17189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frixione E (2000) Recurring views on the structure and function of the cytoskeleton: a 300-year epic. Cell Motil Cytoskeleton 46:73–94

    Article  CAS  PubMed  Google Scholar 

  • Fujii T, Iwane AH, Yanagida T et al (2010) Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467:724–728

    Article  CAS  PubMed  Google Scholar 

  • Goodson HV, Hawse WF (2002) Molecular evolution of the actin family. J Cell Sci 115:2619–2622

    CAS  PubMed  Google Scholar 

  • Guy L, Ettema TJG (2011) The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol 19:580–587

    Article  CAS  PubMed  Google Scholar 

  • Hara F, Yamashiro K, Nemoto N et al (2007) An actin homolog of the archaeon Thermoplasma acidophilum that retains the ancient characteristics of eukaryotic actin. J Bacteriol 189:2039–2045

    Article  CAS  PubMed  Google Scholar 

  • Hennessey ES, Drummond DR, Sparrow JC (1993) Molecular genetics of actin function. Biochem J 291:657–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38:545–549

    Article  Google Scholar 

  • Holmes KC, Popp D, Gebhard W et al (1990) Atomic model of the actin filament. Nature 347:44–49

    Article  CAS  PubMed  Google Scholar 

  • Izoré T, Duman R, Kureisaite-Ciziene D et al (2014) Crenactin from Pyrobaculum calidifontis is closely related to actin in structure and forms steep helical filaments. FEBS Lett 588:776–782

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones LJF, Carballido-López R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922

    Article  CAS  PubMed  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D et al (1990) Atomic structure of the actin:DNase I complex. Nature 347:37–44

    Article  CAS  PubMed  Google Scholar 

  • Köster DV, Mayor S (2016) Cortical actin and the plasma membrane: inextricably intertwined. Curr Opin Cell Biol 38:81–89

    Article  PubMed  Google Scholar 

  • Lindås AC, Karlsson EA, Lindgren MT et al (2008) A unique cell division machinery in the Archaea. Proc Natl Acad Sci U S A 105:18942–18946

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindås AC, Chruszcz M, Bernander R et al (2014) Structure of crenactin, an archaeal actin homologue active at 90 °C. Acta Crystallogr D Biol Crystallogr D70:492–500

    Article  Google Scholar 

  • Makarova KS, Yutin N, Bell SD et al (2010) Evolution of diverse cell division and vesicle formation systems in Archaea. Nat Rev Microbiol 8:731–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra M, Huang J, Balasubramanian MK (2014) The yeast actin cytoskeleton. FEMS Microbiol Rev 38:213–227

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD, Cooper JA (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 55:987–1035

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roeben A, Kofler C, Nagy I et al (2006) Crystal structure of an archaeal actin homolog. J Mol Biol 358:145–156

    Article  CAS  PubMed  Google Scholar 

  • Saw JH, Spang A, Zaremba-Niedzwiedzka K et al (2015) Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes. Philos Trans R Soc Lond Ser B Biol Sci 370:20140328

    Article  Google Scholar 

  • Spang A, Saw JH, Jørgensen SL et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Ent F, Amos LA, Löwe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413:39–44

    Article  PubMed  Google Scholar 

  • van den Ent F, Izoré T, Bharat TA, Johnson CM, Löwe J (2014) Bacterial actin MreB forms antiparallel double filaments. Elife 3:e02634

    PubMed  PubMed Central  Google Scholar 

  • Vorobiev S, Strokopytov B, Drubin DG et al (2003) The structure of nonvertebrate actin: implications for the ATP hydrolytic mechanism. Proc Natl Acad Sci U S A 100:5760–5765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann-Christin Lindås .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lindås, AC., Valegård, K., Ettema, T.J.G. (2017). Archaeal Actin-Family Filament Systems. In: Löwe, J., Amos, L. (eds) Prokaryotic Cytoskeletons. Subcellular Biochemistry, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-53047-5_13

Download citation

Publish with us

Policies and ethics