Skip to main content

Applications in Various Areas

  • Chapter
  • First Online:
Cellular Automata: Analysis and Applications

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 2011 Accesses

Abstract

There are many examples where cellular automata contribute to the understanding of scientific phenomena. In the following, we briefly sketch three of these applications to demonstrate the flexibility of cellular automata as a modeling approach. All these models allow for a specific analysis of their dynamics, at least in some heuristic way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality. Phys. Rev. A 38, 364–374 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Brauer, P. van den Driessche, J. Wu, Mathematical Epidemiology (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  3. M. Bulmer, Periodical insects. Am. Nat. 111, 1099–1117 (1977)

    Article  Google Scholar 

  4. P.R. Campos, V.M. de Oliveira, R. Giro, D.S. Galvao, Emergence of prime numbers as the result of evolutionary strategy. Phys. Rev. Lett. 93, 098107 (2004)

    Article  Google Scholar 

  5. S.A. Colgate, A. Stanley, J. Hyman, S.P. Layne, C. Qualls, Risk behavior-based model of the cubic growth of acquired immunodeficiency syndrome in the united states. Proc. Natl. Acad. Sci. USA 86, 4739–4797 (1989)

    Article  Google Scholar 

  6. O. Diekmann, A beginner’s guide to adaptive dynamics. Banach Center Publ. 63, 47–86 (2004)

    MathSciNet  MATH  Google Scholar 

  7. O. Diekmann, H. Heesterbeek, T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics (Princeton University Press, Princeton, 2013)

    MATH  Google Scholar 

  8. L. Edelstein-Keshet, Mathematical Models in Biology (McGraw-Hill, New York, 1988)

    MATH  Google Scholar 

  9. V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang, P. Meakin, Avalanche dynamics in a pile of rice. Nature 379, 49–52 (1996)

    Article  Google Scholar 

  10. E. Goles, O. Schulz, M. Markus, A biological generator of prime numbers. Nonlin. Phenom. Compl. Syst. 3, 208–213 (2000)

    MathSciNet  Google Scholar 

  11. E. Goles, O. Schulz, M. Markus, Prime number selection of cycles in a predator-prey model. Complexity 6, 33–38 (2001)

    Article  Google Scholar 

  12. P. Grant, The priming of periodical cicada life cycles. Trends Ecol. Evol. 20, 169–174 (2005)

    Article  Google Scholar 

  13. J. Hofbauer, K. Sigmund, Evolutionstheorie und Dynamische Systeme (Parrey Verlag, Hamburg, 1984)

    MATH  Google Scholar 

  14. F. Hoppensteadt, J. Keller, Synchronization of periodical cicada emergences. Science 194, 335–337 (1976)

    Article  Google Scholar 

  15. A. Johansen, A simple model of recurrent epidemics. J. Theor. Biol. 178, 45–51 (1996)

    Article  Google Scholar 

  16. R. Kon, Permanence induced by life-cycle resonances: the periodical cicada problem. J. Biol. Dyn. 6, 855–890 (2012)

    Article  Google Scholar 

  17. G. Kristy, Periodical cicadas. Nature 341, 288–289 (1989)

    Article  Google Scholar 

  18. D. Markovic, C. Gros, Power laws and self-organized criticality in theory and nature. Phys. Rep. 536, 41–74 (2014)

    Article  MathSciNet  Google Scholar 

  19. M. Markus, O. Schulz, E. Goles, Prey population cycles are stable in an evolutionary model if and only if their periods are prime. ScienceAsia 28, 199–203 (2002)

    Article  Google Scholar 

  20. J. Müller, C. Kuttler, Methods and Models in Mathematical Biology (Springer, Berlin, 2015)

    Book  MATH  Google Scholar 

  21. J. Murray, Mathematical Biology (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  22. T. Sato, Decidability for some linear cellular automata over finite rings. Inf. Process. Lett. 46, 151–155 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Szendroi, G. Csányi, Polynomial epidemics and clustering in contact networks. Proc. R. Soc. B 271, S364–S366 (2004)

    Article  Google Scholar 

  24. A. Vazquez, Polynomial growth in branching processes with diverging reproductive number. Phys. Rev. Lett. 96, 038702 (2006)

    Article  Google Scholar 

  25. K. Williams, C. Simon, The ecology, behavior, and evolution of periodical cicadas. Annu. Rev. Entomol. 40, 269–295 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hadeler, KP., Müller, J. (2017). Applications in Various Areas. In: Cellular Automata: Analysis and Applications. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-53043-7_13

Download citation

Publish with us

Policies and ethics