Skip to main content

Abstract

Coronary artery disease (CAD) remains the leading single cause of death in the Western world and developing countries despite improvements in prevention and advances in diagnosis and treatment. X-ray coronary angiography is the current gold standard for the detection of coronary artery stenosis, however this test is invasive and has limited value for the detection and characterization of coronary plaque. Magnetic Resonance Imaging (MRI) is a very promising non-invasive tool for comprehensive early risk assessment of CAD due to its excellent soft tissue contrast, high spatial resolution and lack of ionizing radiation. MRI is considered a gold standard for the assessment of cardiac anatomy, left ventricular function and myocardial viability from late gadolinium enhancement (LGE), and it has shown great potential for coronary lumen, plaque and thrombus/haemorrhage visualization. However, two major challenges remaining for coronary MRI are image quality degradation due to the pronounced cardiac and respiratory motion during the acquisition, and long scan times resulting from the high spatial resolution required to visualise the small calibre of the coronary arteries. This chapter reviews the technical challenges and general imaging strategies for coronary MRI and provides an overview of its current clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ao:

Aorta

CAD:

Coronary artery disease

CT:

Computed tomography

EEG:

Electrocardiogram

FH:

Foot-head

GRAPPA:

Generalized autocalibrating partially parallel acquisitions

iNAV:

Image navigator

LAD:

Left anterior descending coronary artery

LCX:

Left circumflex coronary artery

LDL:

Low-density lipoproteins

LGE:

Late gadolinium enhancement

MRA:

Magnetic resonance angiography

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

RCA:

Right coronary artery

RF:

Radiofrequency

SENSE:

Sensitivity encoding

SNR:

Signal-to-noise-ratio

SSFP:

Balanced steady-state-free-precession

SSFP:

Steady-state-free-precession

References

  1. Karamitsos TD, Francis JM, Myerson S, Selvanayagam JB, Neubauer S. The role of cardiovascular magnetic resonance imaging in heart failure. J Am Coll Cardiol. 2009;54(15):1407–24.

    Article  PubMed  Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics – 2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–e292.

    Article  PubMed  Google Scholar 

  3. Nesto RW, Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol. 1987;59(7):23C–30C.

    Article  CAS  PubMed  Google Scholar 

  4. Mehta D, Curwin J, Gomes JA, Fuster V. Sudden death in coronary artery disease: acute ischemia versus myocardial substrate. Circulation. 1997;96(9):3215–23.

    Article  CAS  PubMed  Google Scholar 

  5. Chow BJ, Abraham A, Wells GA, Chen L, Ruddy TD, Yam Y, et al. Diagnostic accuracy and impact of computed tomographic coronary angiography on utilization of invasive coronary angiography. Circ Cardiovasc Imag. 2009;2(1):16–23.

    Article  Google Scholar 

  6. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359(22):2324–36.

    Article  CAS  PubMed  Google Scholar 

  7. Bandettini WP, Arai AE. Advances in clinical applications of cardiovascular magnetic resonance imaging. Heart. 2008;94(11):1485–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gore TB, Rollings RC, Gore 3rd AW. The many facets of cardiovascular magnetic resonance imaging: review of background, clinical utility, and increasing use in the community hospital. South Med J. 2009;102(7):719–24.

    Article  PubMed  Google Scholar 

  9. Lockie T, Nagel E, Redwood S, Plein S. Use of cardiovascular magnetic resonance imaging in acute coronary syndromes. Circulation. 2009;119(12):1671–81.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379(9814):453–60.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER, et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson. 2013;15:51.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ferreira VM, Piechnik SK, Robson MD, Neubauer S, Karamitsos TD. Myocardial tissue characterization by magnetic resonance imaging: novel applications of T1 and T2 mapping. J Thorac Imaging. 2014;29(3):147–54.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Salerno M, Kramer CM. Advances in parametric mapping with CMR imaging. JACC Cardiovasc Imaging. 2013;6(7):806–22.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kato S, Kitagawa K, Ishida N, Ishida M, Nagata M, Ichikawa Y, et al. Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. J Am Coll Cardiol. 2010;56(12):983–91.

    Article  PubMed  Google Scholar 

  15. Yoon YE, Kitagawa K, Kato S, Ishida M, Nakajima H, Kurita T, et al. Prognostic value of coronary magnetic resonance angiography for prediction of cardiac events in patients with suspected coronary artery disease. J Am Coll Cardiol. 2012;60(22):2316–22.

    Article  PubMed  Google Scholar 

  16. Ibrahim T, Makowski MR, Jankauskas A, Maintz D, Karch M, Schachoff S, et al. Serial contrast-enhanced cardiac magnetic resonance imaging demonstrates regression of hyperenhancement within the coronary artery wall in patients after acute myocardial infarction. JACC Cardiovascular imaging. 2009;2(5):580–8.

    Article  PubMed  Google Scholar 

  17. Kim WY, Astrup AS, Stuber M, Tarnow L, Falk E, Botnar RM, et al. Subclinical coronary and aortic atherosclerosis detected by magnetic resonance imaging in type 1 diabetes with and without diabetic nephropathy. Circulation. 2007;115(2):228–35.

    Article  PubMed  Google Scholar 

  18. Yeon SB, Sabir A, Clouse M, Martinezclark PO, Peters DC, Hauser TH, et al. Delayed-enhancement cardiovascular magnetic resonance coronary artery wall imaging: comparison with multislice computed tomography and quantitative coronary angiography. J Am Coll Cardiol. 2007;50(5):441–7.

    Article  PubMed  Google Scholar 

  19. Jansen CH, Perera D, Makowski MR, Wiethoff AJ, Phinikaridou A, Razavi RM, et al. Detection of intracoronary thrombus by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 2011;124(4):416–24.

    Article  CAS  PubMed  Google Scholar 

  20. Noguchi T, Kawasaki T, Tanaka A, Yasuda S, Goto Y, Ishihara M, et al. High-intensity signals in coronary plaques on noncontrast T1-weighted magnetic resonance imaging as a novel determinant of coronary events. J Am Coll Cardiol. 2014;63(10):989–99.

    Article  PubMed  Google Scholar 

  21. Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med. 1999;42(2):361–70.

    Article  CAS  PubMed  Google Scholar 

  22. Kim WY, Stuber M, Kissinger KV, Andersen NT, Manning WJ, Botnar RM. Impact of bulk cardiac motion on right coronary MR angiography and vessel wall imaging. J Magn Reson Imag: JMRI. 2001;14(4):383–90.

    Article  CAS  Google Scholar 

  23. Leiner T, Katsimaglis G, Yeh EN, Kissinger KV, van Yperen G, Eggers H, et al. Correction for heart rate variability improves coronary magnetic resonance angiography. J Magn Reson Imaging. 2005;22(4):577–82.

    Article  PubMed  Google Scholar 

  24. Wang Y, Riederer SJ, Ehman RL. Respiratory motion of the heart: kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med. 1995;33(5):713–9.

    Article  CAS  PubMed  Google Scholar 

  25. Danias PG, Stuber M, Botnar RM, Kissinger KV, Edelman RR, Manning WJ. Relationship between motion of coronary arteries and diaphragm during free breathing: lessons from real-time MR imaging. AJR Am J Roentgenol. 1999;172(4):1061–5.

    Article  CAS  PubMed  Google Scholar 

  26. McLeish K, Hill DL, Atkinson D, Blackall JM, Razavi R. A study of the motion and deformation of the heart due to respiration. IEEE Trans Med Imaging. 2002;21(9):1142–50.

    Article  PubMed  Google Scholar 

  27. Nehrke K, Bornert P, Manke D, Bock JC. Free-breathing cardiac MR imaging: study of implications of respiratory motion – initial results. Radiology. 2001;220(3):810–5.

    Article  CAS  PubMed  Google Scholar 

  28. Shechter G, Ozturk C, Resar JR, McVeigh ER. Respiratory motion of the heart from free breathing coronary angiograms. IEEE Trans Med Imaging. 2004;23(8):1046–56.

    Article  PubMed  PubMed Central  Google Scholar 

  29. McConnell MV, Khasgiwala VC, Savord BJ, Chen MH, Chuang ML, Edelman RR, et al. Comparison of respiratory suppression methods and navigator locations for MR coronary angiography. AJR Am J Roentgenol. 1997;168(5):1369–75.

    Article  CAS  PubMed  Google Scholar 

  30. Santelli C, Nezafat R, Goddu B, Manning WJ, Smink J, Kozerke S, et al. Respiratory bellows revisited for motion compensation: preliminary experience for cardiovascular MR. Magn Reson Med. 2011;65(4):1097–102.

    Article  PubMed  Google Scholar 

  31. Ehman RL, Felmlee JP. Adaptive technique for high-definition MR imaging of moving structures. Radiology. 1989;173(1):255–63.

    Article  CAS  PubMed  Google Scholar 

  32. Danias PG, McConnell MV, Khasgiwala VC, Chuang ML, Edelman RR, Manning WJ. Prospective navigator correction of image position for coronary MR angiography. Radiology. 1997;203(3):733–6.

    Article  CAS  PubMed  Google Scholar 

  33. Nehrke K, Bornert P, Groen J, Smink J, Bock JC. On the performance and accuracy of 2D navigator pulses. Magn Reson Imaging. 1999;17(8):1173–81.

    Article  CAS  PubMed  Google Scholar 

  34. Firmin D, Keegan J. Navigator echoes in cardiac magnetic resonance. J Cardiovasc Magn Reson. 2001;3(3):183–93.

    Article  CAS  PubMed  Google Scholar 

  35. Moghari MH, Hu P, Kissinger KV, Goddu B, Goepfert L, Ngo L, et al. Subject-specific estimation of respiratory navigator tracking factor for free-breathing cardiovascular MR. Magn Reson Med. 2012;67(6):1665–72.

    Article  PubMed  Google Scholar 

  36. Taylor AM, Keegan J, Jhooti P, Firmin DN, Pennell DJ. Calculation of a subject-specific adaptive motion-correction factor for improved real-time navigator echo-gated magnetic resonance coronary angiography. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 1999;1(2):131–8.

    Article  CAS  Google Scholar 

  37. Buehrer M, Curcic J, Boesiger P, Kozerke S. Prospective self-gating for simultaneous compensation of cardiac and respiratory motion. Magn Reson Med. 2008;60(3):683–90.

    Article  PubMed  Google Scholar 

  38. Kim WS, Mun CW, Kim DJ, Cho ZH. Extraction of cardiac and respiratory motion cycles by use of projection data and its applications to NMR imaging. Magn Reson Med. 1990;13(1):25–37.

    Article  CAS  PubMed  Google Scholar 

  39. Lai P, Bi X, Jerecic R, Li D. A respiratory self-gating technique with 3D-translation compensation for free-breathing whole-heart coronary MRA. Magn Reson Med. 2009;62(3):731–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO. Respiratory self-navigation for whole-heart bright-blood coronary MRI: methods for robust isolation and automatic segmentation of the blood pool. Magn Reson Med. 2012;68(2):571–9.

    Article  PubMed  Google Scholar 

  41. Stehning C, Bornert P, Nehrke K, Eggers H, Stuber M. Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med. 2005;54(2):476–80.

    Article  CAS  PubMed  Google Scholar 

  42. Addy NO, Ingle RR, Luo J, Baron CA, Yang PC, Hu BS, et al. 3D image-based navigators for coronary MR angiography. Magn Reson Med. 2016. doi:10.1002/mrm.26269. [Epub ahead of print].

  43. Henningsson M, Koken P, Stehning C, Razavi R, Prieto C, Botnar RM. Whole-heart coronary MR angiography with 2D self-navigated image reconstruction. Magn Reson Med. 2012;67(2):437–45.

    Article  PubMed  Google Scholar 

  44. Henningsson M, Smink J, Razavi R, Botnar RM. Prospective respiratory motion correction for coronary MR angiography using a 2D image navigator. Magn Reson Med. 2013;69(2):486–94.

    Article  PubMed  Google Scholar 

  45. Kawaji K, Spincemaille P, Nguyen TD, Thimmappa N, Cooper MA, Prince MR, et al. Direct coronary motion extraction from a 2D fat image navigator for prospectively gated coronary MR angiography. Magn Reson Med. 2014;71(2):599–607.

    Article  PubMed  Google Scholar 

  46. Luo J, Addy NO, Ingle RR, Baron CA, Cheng JY, Hu BS, et al. Nonrigid motion correction with 3D image-based navigators for coronary MR angiography. Magn Reson Med. 2016. doi: 10.1002/mrm.26273. [Epub ahead of print].

  47. Moghari MH, Annese D, Geva T, Powell AJ. Three-dimensional heart locator and compressed sensing for whole-heart MR angiography. Magn Reson Med. 2016;75(5):2086–93.

    Article  CAS  PubMed  Google Scholar 

  48. Moghari MH, Roujol S, Henningsson M, Kissinger KV, Annese D, Nezafat R, et al. Three-dimensional heart locator for whole-heart coronary magnetic resonance angiography. Magn Reson Med. 2014;71(6):2118–26.

    Article  PubMed  Google Scholar 

  49. Wu HH, Gurney PT, Hu BS, Nishimura DG, McConnell MV. Free-breathing multiphase whole-heart coronary MR angiography using image-based navigators and three-dimensional cones imaging. Magn Reson Med. 2013;69(4):1083–93.

    Article  PubMed  Google Scholar 

  50. Bornert P, Aldefeld B, Nehrke K. Improved 3D spiral imaging for coronary MR angiography. Magn Reson Med. 2001;45(1):172–5.

    Article  CAS  PubMed  Google Scholar 

  51. Bornert P, Stuber M, Botnar RM, Kissinger KV, Koken P, Spuentrup E, et al. Direct comparison of 3D spiral vs. Cartesian gradient-echo coronary magnetic resonance angiography. Magn Reson Med. 2001;46(4):789–94.

    Article  CAS  PubMed  Google Scholar 

  52. Jahnke C, Paetsch I, Schnackenburg B, Gebker R, Kohler U, Bornstedt A, et al. Comparison of radial and Cartesian imaging techniques for MR coronary angiography. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2004;6(4):865–75.

    Article  Google Scholar 

  53. Priest AN, Bansmann PM, Mullerleile K, Adam G. Coronary vessel-wall and lumen imaging using radial k-space acquisition with MRI at 3 Tesla. Eur Radiol. 2007;17(2):339–46.

    Article  PubMed  Google Scholar 

  54. Spuentrup E, Katoh M, Buecker A, Manning WJ, Schaeffter T, Nguyen TH, et al. Free-breathing 3D steady-state free precession coronary MR angiography with radial k-space sampling: comparison with cartesian k-space sampling and cartesian gradient-echo coronary MR angiography – pilot study. Radiology. 2004;231(2):581–6.

    Article  PubMed  Google Scholar 

  55. Bhat H, Ge L, Nielles-Vallespin S, Zuehlsdorff S, Li D. 3D radial sampling and 3D affine transform-based respiratory motion correction technique for free-breathing whole-heart coronary MRA with 100% imaging efficiency. Magn Reson Med. 2011;65(5):1269–77.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pang J, Sharif B, Arsanjani R, Bi X, Fan Z, Yang Q, et al. Accelerated whole-heart coronary MRA using motion-corrected sensitivity encoding with three-dimensional projection reconstruction. Magn Reson Med. 2015;73(1):284–91.

    Article  PubMed  Google Scholar 

  57. Piccini D, Monney P, Sierro C, Coppo S, Bonanno G, van Heeswijk RB, et al. Respiratory self-navigated postcontrast whole-heart coronary MR angiography: initial experience in patients. Radiology. 2014;270(2):378–86.

    Article  PubMed  Google Scholar 

  58. Coppo S, Piccini D, Bonanno G, Chaptinel J, Vincenti G, Feliciano H, et al. Free-running 4D whole-heart self-navigated golden angle MRI: initial results. Magn Reson Med. 2015;74(5):1306–16.

    Article  PubMed  Google Scholar 

  59. Pang J, Sharif B, Fan Z, Bi X, Arsanjani R, Berman DS, et al. ECG and navigator-free four-dimensional whole-heart coronary MRA for simultaneous visualization of cardiac anatomy and function. Magn Reson Med. 2014;72(5):1208–17.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47(6):1202–10.

    Article  PubMed  Google Scholar 

  61. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.

    Article  CAS  PubMed  Google Scholar 

  62. Niendorf T, Hardy CJ, Giaquinto RO, Gross P, Cline HE, Zhu Y, et al. Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med. 2006;56(1):167–76.

    Article  PubMed  Google Scholar 

  63. Wielopolski PA, van Geuns RJ, de Feyter PJ, Oudkerk M. Breath-hold coronary MR angiography with volume-targeted imaging. Radiology. 1998;209(1):209–19.

    Article  CAS  PubMed  Google Scholar 

  64. Akcakaya M, Basha TA, Chan RH, Manning WJ, Nezafat R. Accelerated isotropic sub-millimeter whole-heart coronary MRI: compressed sensing versus parallel imaging. Magn Reson Med. 2014;71(2):815–22.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.

    Article  PubMed  Google Scholar 

  66. Pang J, Bhat H, Sharif B, Fan Z, Thomson LE, Labounty T, et al. Whole-heart coronary MRA with 100% respiratory gating efficiency: self-navigated three-dimensional retrospective image-based motion correction (TRIM). Magn Reson Med. 2014;71(1):67–74. doi:10.1002/mrm.24628. Epub 2013 Feb 7.

  67. Aitken AP, Henningsson M, Botnar RM, Schaeffter T, Prieto C. 100% efficient three-dimensional coronary MR angiography with two-dimensional beat-to-beat translational and bin-to-bin affine motion correction. Magn Reson Med. 2015;74(3):756–64.

    Article  PubMed  Google Scholar 

  68. Cruz G, Atkinson D, Henningsson M, Botnar RM, Prieto C. Highly efficient nonrigid motion-corrected 3D whole-heart coronary vessel wall imaging. Magn Reson Med. 2016. doi: 10.1002/mrm.26274. [Epub ahead of print].

  69. Henningsson M, Prieto C, Chiribiri A, Vaillant G, Razavi R, Botnar RM. Whole-heart coronary MRA with 3D affine motion correction using 3D image-based navigation. Magn Reson Med. 2014;71(1):173–81.

    Article  PubMed  Google Scholar 

  70. Prieto C, Doneva M, Usman M, Henningsson M, Greil G, Schaeffter T, et al. Highly efficient respiratory motion compensated free-breathing coronary mra using golden-step Cartesian acquisition. J Magn Reson Imag: JMRI. 2015;41(3):738–46.

    Article  Google Scholar 

  71. Ingle RR, Wu HH, Addy NO, Cheng JY, Yang PC, Hu BS, et al. Nonrigid autofocus motion correction for coronary MR angiography with a 3D cones trajectory. Magn Reson Med. 2014;72(2):347–61.

    Article  PubMed  Google Scholar 

  72. Edelman RR, Manning WJ, Burstein D, Paulin S. Coronary arteries: breath-hold MR angiography. Radiology. 1991;181(3):641–3.

    Article  CAS  PubMed  Google Scholar 

  73. Manning WJ, Li W, Boyle NG, Edelman RR. Fat-suppressed breath-hold magnetic resonance coronary angiography. Circulation. 1993;87(1):94–104.

    Article  CAS  PubMed  Google Scholar 

  74. Deshpande VS, Shea SM, Laub G, Simonetti OP, Finn JP, Li D. 3D magnetization-prepared true-FISP: a new technique for imaging coronary arteries. Magn Reson Med. 2001;46(3):494–502.

    Article  CAS  PubMed  Google Scholar 

  75. Li D, Paschal CB, Haacke EM, Adler LP. Coronary arteries: three-dimensional MR imaging with fat saturation and magnetization transfer contrast. Radiology. 1993;187(2):401–6.

    Article  CAS  PubMed  Google Scholar 

  76. Giorgi B, Dymarkowski S, Maes F, Kouwenhoven M, Bogaert J. Improved visualization of coronary arteries using a new three-dimensional submillimeter MR coronary angiography sequence with balanced gradients. AJR Am J Roentgenol. 2002;179(4):901–10.

    Article  PubMed  Google Scholar 

  77. Spuentrup E, Bornert P, Botnar RM, Groen JP, Manning WJ, Stuber M. Navigator-gated free-breathing three-dimensional balanced fast field echo (TrueFISP) coronary magnetic resonance angiography. Investig Radiol. 2002;37(11):637–42.

    Article  Google Scholar 

  78. Kaul MG, Stork A, Bansmann PM, Nolte-Ernsting C, Lund GK, Weber C, et al. Evaluation of balanced steady-state free precession (TrueFISP) and K-space segmented gradient echo sequences for 3D coronary MR angiography with navigator gating at 3 Tesla. RoFo: Fortschr auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin. 2004;176(11):1560–5.

    Article  CAS  Google Scholar 

  79. Nezafat M, Henningsson M, Ripley DP, Dedieu N, Greil G, Greenwood JP, et al. Coronary MR angiography at 3 T: fat suppression versus water-fat separation. Magma. 2016.

    Google Scholar 

  80. Yang Q, Li K, Liu X, Du X, Bi X, Huang F, et al. 3.0T whole-heart coronary magnetic resonance angiography performed with 32-channel cardiac coils: a single-center experience. Circ Cardiovasc Imag. 2012;5(5):573–9.

    Article  Google Scholar 

  81. Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ. Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation. 1999;99(24):3139–48.

    Article  CAS  PubMed  Google Scholar 

  82. Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG. Coronary angiography with magnetization-prepared T2 contrast. Magn Reson Med. 1995;33(5):689–96.

    Article  CAS  PubMed  Google Scholar 

  83. Bornert P, Koken P, Nehrke K, Eggers H, Ostendorf P. Water/fat-resolved whole-heart Dixon coronary MRA: an initial comparison. Magn Reson Med. 2014;71(1):156–63.

    Article  PubMed  Google Scholar 

  84. Mookadam F, Goel R, Alharthi MS, Jiamsripong P, Cha S. Epicardial fat and its association with cardiovascular risk: a cross-sectional observational study. Heart Views: Off J Gulf Heart Association. 2010;11(3):103–8.

    Article  Google Scholar 

  85. Sicari R, Sironi AM, Petz R, Frassi F, Chubuchny V, De Marchi D, et al. Pericardial rather than epicardial fat is a cardiometabolic risk marker: an MRI vs echo study. J Am Soc Echocardiogr: Off Publ Am Soc Echocardiogr. 2011;24(10):1156–62.

    Article  Google Scholar 

  86. Huber ME, Paetsch I, Schnackenburg B, Bornstedt A, Nagel E, Fleck E, et al. Performance of a new gadolinium-based intravascular contrast agent in free-breathing inversion-recovery 3D coronary MRA. Magn Reson Med. 2003;49(1):115–21.

    Article  PubMed  Google Scholar 

  87. Li D, Dolan RP, Walovitch RC, Lauffer RB. Three-dimensional MRI of coronary arteries using an intravascular contrast agent. Magn Reson Med. 1998;39(6):1014–8.

    Article  CAS  PubMed  Google Scholar 

  88. Liu X, Bi X, Huang J, Jerecic R, Carr J, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 T. Investig Radiol. 2008;43(9):663–8.

    Article  Google Scholar 

  89. Nassenstein K, Breuckmann F, Hunold P, Barkhausen J, Schlosser T. Magnetic resonance coronary angiography: comparison between a Gd-BOPTA- and a Gd-DTPA-enhanced spoiled gradient-echo sequence and a non-contrast-enhanced steady-state free-precession sequence. Acta Radiol. 2009;50(4):406–11.

    Article  CAS  PubMed  Google Scholar 

  90. Regenfus M, Ropers D, Achenbach S, Kessler W, Laub G, Daniel WG, et al. Noninvasive detection of coronary artery stenosis using contrast-enhanced three-dimensional breath-hold magnetic resonance coronary angiography. J Am Coll Cardiol. 2000;36(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  91. Tang L, Merkle N, Schar M, Korosoglou G, Solaiyappan M, Hombach V, et al. Volume-targeted and whole-heart coronary magnetic resonance angiography using an intravascular contrast agent. J Magn Reson Imaging. 2009;30(5):1191–6.

    Article  PubMed  Google Scholar 

  92. Yang Q, Li K, Liu X, Bi X, Liu Z, An J, et al. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol. 2009;54(1):69–76.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Laurent S, Elst LV, Muller RN. Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol Imag. 2006;1(3):128–37.

    Article  CAS  Google Scholar 

  94. Wagner B, Drel V, Gorin Y. Pathophysiology of gadolinium-associated systemic fibrosis. Am J Physiol Ren Physiol. 2016;311(1):F1–F11.

    Article  CAS  Google Scholar 

  95. Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation. 2000;102(21):2582–7.

    Article  CAS  PubMed  Google Scholar 

  96. Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, Helft G, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation. 2000;102(5):506–10.

    Article  CAS  PubMed  Google Scholar 

  97. Edelman RR, Chien D, Kim D. Fast selective black blood MR imaging. Radiology. 1991;181(3):655–60.

    Article  CAS  PubMed  Google Scholar 

  98. Botnar RM, Stuber M, Lamerichs R, Smink J, Fischer SE, Harvey P, et al. Initial experiences with in vivo right coronary artery human MR vessel wall imaging at 3 tesla. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2003;5(4):589–94.

    Article  Google Scholar 

  99. Botnar RM, Kim WY, Bornert P, Stuber M, Spuentrup E, Manning WJ. 3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition. Magn Reson Med. 2001;46(5):848–54.

    Article  CAS  PubMed  Google Scholar 

  100. Katoh M, Spuentrup E, Buecker A, Manning WJ, Gunther RW, Botnar RM. MR coronary vessel wall imaging: comparison between radial and spiral k-space sampling. J Magn Reson Imag: JMRI. 2006;23(5):757–62.

    Article  Google Scholar 

  101. Kim WY, Stuber M, Bornert P, Kissinger KV, Manning WJ, Botnar RM. Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation. 2002;106(3):296–9.

    Article  PubMed  Google Scholar 

  102. Andia ME, Henningsson M, Hussain T, Phinikaridou A, Protti A, Greil G, et al. Flow-independent 3D whole-heart vessel wall imaging using an interleaved T2-preparation acquisition. Magn Reson Med. 2013;69(1):150–7.

    Article  PubMed  Google Scholar 

  103. Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010;55(23):2614–62.

    Article  PubMed  Google Scholar 

  104. Hofman MB, Paschal CB, Li D, Haacke EM, van Rossum AC, Sprenger M. MRI of coronary arteries: 2D breath-hold vs 3D respiratory-gated acquisition. J Comput Assist Tomogr. 1995;19(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  105. Lobbes MB, Miserus RJ, Heeneman S, Passos VL, Mutsaers PH, Debernardi N, et al. Atherosclerosis: contrast-enhanced MR imaging of vessel wall in rabbit model – comparison of gadofosveset and gadopentetate dimeglumine. Radiology. 2009;250(3):682–91.

    Article  PubMed  Google Scholar 

  106. Oshinski JN, Hofland L, Mukundan Jr S, Dixon WT, Parks WJ, Pettigrew RI. Two-dimensional coronary MR angiography without breath holding. Radiology. 1996;201(3):737–43.

    Article  CAS  PubMed  Google Scholar 

  107. Paschal CB, Haacke EM, Adler LP. Three-dimensional MR imaging of the coronary arteries: preliminary clinical experience. J Magn Reson Imag: JMRI. 1993;3(3):491–500.

    Article  CAS  Google Scholar 

  108. Post JC, van Rossum AC, Hofman MB, Valk J, Visser CA. Three-dimensional respiratory-gated MR angiography of coronary arteries: comparison with conventional coronary angiography. AJR Am J Roentgenol. 1996;166(6):1399–404.

    Article  CAS  PubMed  Google Scholar 

  109. Stuber M, Botnar RM, Danias PG, Sodickson DK, Kissinger KV, Van Cauteren M, et al. Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. J Am Coll Cardiol. 1999;34(2):524–31.

    Article  CAS  PubMed  Google Scholar 

  110. Scheidegger MB, Muller R, Boesiger P. Magnetic resonance angiography: methods and its applications to the coronary arteries. Technol Health Care. 1994;2(4):255–65.

    CAS  PubMed  Google Scholar 

  111. Pennell DJ, Bogren HG, Keegan J, Firmin DN, Underwood SR. Assessment of coronary artery stenosis by magnetic resonance imaging. Heart. 1996;75(2):127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bogaert J, Kuzo R, Dymarkowski S, Beckers R, Piessens J, Rademakers FE. Coronary artery imaging with real-time navigator three-dimensional turbo-field-echo MR coronary angiography: initial experience. Radiology. 2003;226(3):707–16.

    Article  PubMed  Google Scholar 

  113. Dewey M, Teige F, Schnapauff D, Laule M, Borges AC, Rutsch W, et al. Combination of free-breathing and breathhold steady-state free precession magnetic resonance angiography for detection of coronary artery stenoses. J Magn Reson Imag: JMRI. 2006;23(5):674–81.

    Article  Google Scholar 

  114. Jahnke C, Paetsch I, Nehrke K, Schnackenburg B, Gebker R, Fleck E, et al. Rapid and complete coronary arterial tree visualization with magnetic resonance imaging: feasibility and diagnostic performance. Eur Heart J. 2005;26(21):2313–9.

    Article  PubMed  Google Scholar 

  115. Jahnke C, Paetsch I, Schnackenburg B, Bornstedt A, Gebker R, Fleck E, et al. Coronary MR angiography with steady-state free precession: individually adapted breath-hold technique versus free-breathing technique. Radiology. 2004;232(3):669–76.

    Article  PubMed  Google Scholar 

  116. Maintz D, Aepfelbacher FC, Kissinger KV, Botnar RM, Danias PG, Heindel W, et al. Coronary MR angiography: comparison of quantitative and qualitative data from four techniques. AJR Am J Roentgenol. 2004;182(2):515–21.

    Article  PubMed  Google Scholar 

  117. Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med. 1993;328(12):828–32.

    Article  CAS  PubMed  Google Scholar 

  118. Ozgun M, Hoffmeier A, Kouwenhoven M, Botnar RM, Stuber M, Scheld HH, et al. Comparison of 3D segmented gradient-echo and steady-state free precession coronary MRI sequences in patients with coronary artery disease. AJR Am J Roentgenol. 2005;185(1):103–9.

    Article  PubMed  Google Scholar 

  119. Sakuma H, Ichikawa Y, Chino S, Hirano T, Makino K, Takeda K. Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol. 2006;48(10):1946–50.

    Article  PubMed  Google Scholar 

  120. Sakuma H, Ichikawa Y, Suzawa N, Hirano T, Makino K, Koyama N, et al. Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology. 2005;237(1):316–21.

    Article  PubMed  Google Scholar 

  121. Boffano C, Chiribiri A, Cesarani F. Native whole-heart coronary imaging for the identification of anomalous origin of the coronary arteries. Int J Cardiol. 2009;137(1):e27–8.

    Article  PubMed  Google Scholar 

  122. Greil GF, Seeger A, Miller S, Claussen CD, Hofbeck M, Botnar RM, et al. Coronary magnetic resonance angiography and vessel wall imaging in children with Kawasaki disease. Pediatr Radiol. 2007;37(7):666–73.

    Article  PubMed  Google Scholar 

  123. Galjee MA, van Rossum AC, Doesburg T, van Eenige MJ, Visser CA. Value of magnetic resonance imaging in assessing patency and function of coronary artery bypass grafts. An angiographically controlled study. Circulation. 1996;93(4):660–6.

    Article  CAS  PubMed  Google Scholar 

  124. Jenkins JP, Love HG, Foster CJ, Isherwood I, Rowlands DJ. Detection of coronary artery bypass graft patency as assessed by magnetic resonance imaging. Br J Radiol. 1988;61(721):2–4.

    Article  CAS  PubMed  Google Scholar 

  125. Rubinstein RI, Askenase AD, Thickman D, Feldman MS, Agarwal JB, Helfant RH. Magnetic resonance imaging to evaluate patency of aortocoronary bypass grafts. Circulation. 1987;76(4):786–91.

    Article  CAS  PubMed  Google Scholar 

  126. White RD, Caputo GR, Mark AS, Modin GW, Higgins CB. Coronary artery bypass graft patency: noninvasive evaluation with MR imaging. Radiology. 1987;164(3):681–6.

    Article  CAS  PubMed  Google Scholar 

  127. Vrachliotis TG, Bis KG, Aliabadi D, Shetty AN, Safian R, Simonetti O. Contrast-enhanced breath-hold MR angiography for evaluating patency of coronary artery bypass grafts. AJR Am J Roentgenol. 1997;168(4):1073–80.

    Article  CAS  PubMed  Google Scholar 

  128. Wintersperger BJ, Engelmann MG, von Smekal A, Knez A, Penzkofer HV, Hofling B, et al. Patency of coronary bypass grafts: assessment with breath-hold contrast-enhanced MR angiography – value of a non-electrocardiographically triggered technique. Radiology. 1998;208(2):345–51.

    Article  CAS  PubMed  Google Scholar 

  129. Wintersperger BJ, von Smekal A, Engelmann MG, Knez A, Penzkofer HV, Laub G, et al. Contrast media enhanced magnetic resonance angiography for determining patency of a coronary bypass. A comparison with coronary angiography. RoFo: Fortschr auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin. 1997;167(6):572–8.

    Article  CAS  Google Scholar 

  130. Glagov S, Weisenberg E, Zarins C, Stankunavicius R, Kolettis G. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22):1371–5.

    Article  CAS  PubMed  Google Scholar 

  131. Tuzcu EM, Kapadia SR, Tutar E, Ziada KM, Hobbs RE, McCarthy PM, et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation. 2001;103(22):2705–10.

    Article  CAS  PubMed  Google Scholar 

  132. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 Suppl):C13–8.

    Article  CAS  PubMed  Google Scholar 

  133. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35.

    Article  CAS  PubMed  Google Scholar 

  134. Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA: J Am Med Assoc. 2004;291(9):1071–80.

    Article  CAS  Google Scholar 

  135. Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation. 2000;102(11085960):2582–7.

    Article  CAS  PubMed  Google Scholar 

  136. He Y, Zhang Z, Dai Q, Zhou Y, Yang Y, Yu W, et al. Accuracy of MRI to identify the coronary artery plaque: a comparative study with intravascular ultrasound. J Magn Reson Imaging. 2012;35(1):72–8.

    Article  CAS  PubMed  Google Scholar 

  137. Gerretsen S, Kessels AG, Nelemans PJ, Dijkstra J, Reiber JH, van der Geest RJ, et al. Detection of coronary plaques using MR coronary vessel wall imaging: validation of findings with intravascular ultrasound. Eur Radiol. 2013;23(1):115–24.

    Article  PubMed  Google Scholar 

  138. Miao C, Chen S, Macedo R, Lai S, Liu K, Li D, et al. Positive remodeling of the coronary arteries detected by magnetic resonance imaging in an asymptomatic population: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2009;53(18):1708–15.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Macedo R, Chen S, Lai S, Shea S, Malayeri AA, Szklo M, et al. MRI detects increased coronary wall thickness in asymptomatic individuals: the multi-ethnic study of atherosclerosis (MESA). J Magn Reson Imaging. 2008;28(5):1108–15.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Gerretsen SC, Kooi ME, Kessels AG, Schalla S, Katoh M, van der Geest RJ, et al. Visualization of coronary wall atherosclerosis in asymptomatic subjects and patients with coronary artery disease using magnetic resonance imaging. PloS one. 2010;5(9):e12998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Fernandes JL, Serrano Jr CV, Blotta MH, Coelho OR, Nicolau JC, Avila LF, et al. Regression of coronary artery outward remodeling in patients with non-ST-segment acute coronary syndromes: a longitudinal study using noninvasive magnetic resonance imaging. Am Heart J. 2006;152(6):1123–32.

    Article  PubMed  Google Scholar 

  142. Hazirolan T, Gupta SN, Mohamed MA, Bluemke DA. Reproducibility of black-blood coronary vessel wall MR imaging. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2005;7(2):409–13.

    Article  Google Scholar 

  143. Desai MY, Lai S, Barmet C, Weiss RG, Stuber M. Reproducibility of 3D free-breathing magnetic resonance coronary vessel wall imaging. Eur Heart J. 2005;26(21):2320–4.

    Article  PubMed  Google Scholar 

  144. Anderson TJ, Meredith IT, Yeung AC, Frei B, Selwyn AP, Ganz P. The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N Engl J Med. 1995;332(8):488–93.

    Article  CAS  PubMed  Google Scholar 

  145. Terashima M, Meyer CH, Keeffe BG, Putz EJ, de la Pena-Almaguer E, Yang PC, et al. Noninvasive assessment of coronary vasodilation using magnetic resonance angiography. J Am Coll Cardiol. 2005;45(1):104–10.

    Article  PubMed  Google Scholar 

  146. Nguyen PK, Meyer C, Engvall J, Yang P, McConnell MV. Noninvasive assessment of coronary vasodilation using cardiovascular magnetic resonance in patients at high risk for coronary artery disease. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2008;10:28.

    Article  Google Scholar 

  147. Hays AG, Hirsch GA, Kelle S, Gerstenblith G, Weiss RG, Stuber M. Noninvasive visualization of coronary artery endothelial function in healthy subjects and in patients with coronary artery disease. J Am Coll Cardiol. 2010;56(20):1657–65.

    Article  PubMed  Google Scholar 

  148. Kelle S, Hays AG, Hirsch GA, Gerstenblith G, Miller JM, Steinberg AM, et al. Coronary artery distensibility assessed by 3.0 Tesla coronary magnetic resonance imaging in subjects with and without coronary artery disease. Am J Cardiol. 2011;108(4):491–7.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Moody AR, Allder S, Lennox G, Gladman J, Fentem P. Direct magnetic resonance imaging of carotid artery thrombus in acute stroke. Lancet. 1999;353(10023906):122–3.

    Article  CAS  PubMed  Google Scholar 

  150. Kawasaki T, Koga S, Koga N, Noguchi T, Tanaka H, Koga H, et al. Characterization of hyperintense plaque with noncontrast T1-weighted cardiac magnetic resonance coronary plaque imaging comparison with multislice computed tomography and intravascular ultrasound. J Am Coll Cardiol Img. 2009;2(6):720–8.

    Article  Google Scholar 

  151. Ehara S, Hasegawa T, Nakata S, Matsumoto K, Nishimura S, Iguchi T, et al. Hyperintense plaque identified by magnetic resonance imaging relates to intracoronary thrombus as detected by optical coherence tomography in patients with angina pectoris. Eur Heart J Cardiovasc Imag. 2012;13(5):394–9.

    Article  Google Scholar 

  152. Pedersen SF, Thrysoe SA, Paaske WP, Thim T, Falk E, Ringgaard S, et al. Determination of edema in porcine coronary arteries by T2 weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:52.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kim WY, Christiansen EH, Thrysoe SA, Al-Mashhadi RH, Botker HE, Bottcher M, et al. First in vivo demonstration of coronary edema in culprit lesion of patient with acute coronary syndrome by cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2011;4(3):344–6.

    Article  PubMed  Google Scholar 

  154. Schneeweis C, Schnackenburg B, Stuber M, Berger A, Schneider U, Yu J, et al. Delayed contrast-enhanced MRI of the coronary artery wall in takayasu arteritis. PLoS One. 2012;7(12):e50655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cai J, Hatsukami TS, Ferguson MS, Kerwin WS, Saam T, Chu B, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation. 2005;112(22):3437–44.

    Article  PubMed  Google Scholar 

  156. Langerak SE, Kunz P, Vliegen HW, Lamb HJ, Jukema JW, van Der Wall EE, et al. Improved MR flow mapping in coronary artery bypass grafts during adenosine-induced stress. Radiology. 2001;218(2):540–7.

    Article  CAS  PubMed  Google Scholar 

  157. Yuan C, Kerwin WS, Ferguson MS, Polissar N, Zhang S, Cai J, et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imag: JMRI. 2002;15(1):62–7.

    Article  Google Scholar 

  158. Kelle S, Schlendorf K, Hirsch GA, Gerstenblith G, Fleck E, Weiss RG, et al. Gadolinium enhanced MR coronary vessel wall imaging at 3.0 tesla. Cardiol Res Pract. 2010;2010:1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Prieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Prieto, C., Makowski, M.R., Kim, W.Y., Manning, W.J., Botnar, R.M. (2018). Cardiac MR Angiography. In: Constantinides, C. (eds) Protocols and Methodologies in Basic Science and Clinical Cardiac MRI. Springer, Cham. https://doi.org/10.1007/978-3-319-53001-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53001-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53000-0

  • Online ISBN: 978-3-319-53001-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics