Improving Particle Swarm Optimization Using Co-Optimization of Particles and Acceleration Constants

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 552)


Particle swarm optimization exhibits effective performance for solving difficulties in real-world problems. However, the determination of acceleration constants, which influence the performance of PSO significantly and varies between different problems, is hard to tune. This paper presents a co-optimization strategy of particles and acceleration constants, which incorporates the optimization of parameters into the basic framework of optimization and extends the dimension of particles and embeds the acceleration constants at the additional part. Experiment results manifest that the proposed algorithm shows satisfactory performance.


Particle swarm optimization Co-optimization Acceleration constants 



This work was supported by National Natural Science Foundation of China under Grant No. 61573166, No. 61572230, No. 61373054, No. 61472164, No. 81301298, No.61302128, No. 61472163. Shandong Provincial Natural Science Foundation, China, under Grant ZR2015JL025. Science and technology project of Shandong Province under Grant No. 2015GGX101025.


  1. 1.
    Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  3. 3.
    Dorigo, M.: Optimization, “Learning and Natural Algorithms”. Ph.D. thesis, Politecnico di Milano, Italy (1992)Google Scholar
  4. 4.
    Kennedy, J., Eberhart, R.C.: A new optimizer using paritcle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, pp. 39–43 (1995)Google Scholar
  5. 5.
    Ciurana, J., Arias, G., Ozel, T.: Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel. Mater. Manuf. Processes 24(3), 358–368 (2009)CrossRefGoogle Scholar
  6. 6.
    Eslami, M., Shareef, H., Mohamed, A.: Power system stabilizer design using hybrid multi-objective particle swarm optimization with chaos. J. Central South Univ. Technol. 18(5), 1579–1588 (2011)CrossRefGoogle Scholar
  7. 7.
    Hung, J.-C.: Adaptive Fuzzy-GARCH model applied to forecasting the volatility of stock markets using particle swarm optimization. Inf. Sci. 181(20), 4673–4683 (2011)CrossRefGoogle Scholar
  8. 8.
    del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., et al.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)CrossRefGoogle Scholar
  9. 9.
    Zainud-Deen, S.H., Hassen, W.M., Ali, E.M., et al.: Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques. Prog. Electromagnet. Res. B 3, 35–46 (2008)CrossRefGoogle Scholar
  10. 10.
    Wang, L., Yang, B., Chen, Y., Zhang, X., Orchard, J.: doi: 10.1109/TNNLS.2016.2580570 (in press)
  11. 11.
    Lim, T.S., Koo, V.C., Ewe, H.T., et al.: A SAR autofocus algorithm based on particle swarm optimization. Prog. Electromagnet. Res. B 1, 159–176 (2008)CrossRefGoogle Scholar
  12. 12.
    Wang, L., Yang, B., Abraham, A.: Distilling middle-age cement hydration kinetics from observed data using phased hybrid evolution. Soft. Comput. 20, 3637–3656 (2016)CrossRefGoogle Scholar
  13. 13.
    Zhang, Z.B., Jiang, Y.Z., Zhang, S.H., Geng, S.M., Wang, H., Sang, G.Q.: An adaptive particle swarm optimization algorithm for reservoir operation optimization. Appl. Soft Comput. 18, 167–177 (2014)CrossRefGoogle Scholar
  14. 14.
    Bin, W., Jing, Z.: Haplotype inference using a novel binary particle swarm optimization algorithm. Appl. Soft Comput. 21, 415–422 (2014)CrossRefGoogle Scholar
  15. 15.
    Davoodi, E., Hagh, M.T., Zadeh, S.G.: A hybrid Improved Quantum-behaved Particle Swarm Optimization-Simplex method (IQPSOS) to solve power system load flow problems. Appl. Soft Comput. 21, 171–179 (2013)CrossRefGoogle Scholar
  16. 16.
    Cervantes, A., Galvan, I.M., Isasi, P.: AMPSO: a new particle swarm method for nearest neighborhood classification. IEEE Trans. Cybern. 39(5), 1082–1091 (2009)CrossRefGoogle Scholar
  17. 17.
    Li, D., Wang, W., Ismail, F.: Fuzzy neural network technique for system state forecasting. IEEE Trans. Cybernet. 43(5), 1484–1494 (2013)CrossRefGoogle Scholar
  18. 18.
    Hao Chen, Y., Gong, X.H.: Online modeling with tunable RBF network. IEEE Trans. Cybernet. 43(3), 935–947 (2013)CrossRefGoogle Scholar
  19. 19.
    Zhan, Z.-H., Li, J., Cao, J., Zhang, J., et al.: Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems. IEEE Trans. Cybernet. 43(2) (2013)Google Scholar
  20. 20.
    Qiang, L., Liu, S., Xie, X., Wang, J.: Decision making and finite-time motion control for a group of robots. IEEE Trans. Cybernet. 43(2), 738–750 (2013)CrossRefGoogle Scholar
  21. 21.
    Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)CrossRefGoogle Scholar
  22. 22.
    Liang, J.J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer. In: Proceedings of the Swarm Intelligence Symposium, pp. 124–129 (2005)Google Scholar
  23. 23.
    Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)CrossRefGoogle Scholar
  24. 24.
    Yao, X., Liu, Y., Lin, G.M.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)CrossRefGoogle Scholar
  25. 25.
    Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical report, Nanyang Technological University, Singapore and KanGAL Report Number 2005005 (2005)Google Scholar
  26. 26.
    Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1671–1676 (2002)Google Scholar
  27. 27.
    Wang, L., Yang, B., Chen, Y.: Imrpoving particle swarm optimization using multi-layer searching strategy. Inf. Sci. 274, 70–94 (2014)CrossRefGoogle Scholar
  28. 28.
    Wang, L., Yang, B., Orchard, J.: Imrpoving Particle Swarm Optimization using Multi-Layer Searching Strategy. Appl. Soft Comput. 48, 584–96 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinanChina

Personalised recommendations